ترغب بنشر مسار تعليمي؟ اضغط هنا

Angle-based Search Space Shrinking for Neural Architecture Search

112   0   0.0 ( 0 )
 نشر من قبل Yiming Hu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we present a simple and general search space shrinking method, called Angle-Based search space Shrinking (ABS), for Neural Architecture Search (NAS). Our approach progressively simplifies the original search space by dropping unpromising candidates, thus can reduce difficulties for existing NAS methods to find superior architectures. In particular, we propose an angle-based metric to guide the shrinking process. We provide comprehensive evidences showing that, in weight-sharing supernet, the proposed metric is more stable and accurate than accuracy-based and magnitude-based metrics to predict the capability of child models. We also show that the angle-based metric can converge fast while training supernet, enabling us to get promising shrunk search spaces efficiently. ABS can easily apply to most of NAS approaches (e.g. SPOS, FairNAS, ProxylessNAS, DARTS and PDARTS). Comprehensive experiments show that ABS can dramatically enhance existing NAS approaches by providing a promising shrunk search space.

قيم البحث

اقرأ أيضاً

103 - Siyu Huang , Xi Li , Zhi-Qi Cheng 2018
A key problem in deep multi-attribute learning is to effectively discover the inter-attribute correlation structures. Typically, the conventional deep multi-attribute learning approaches follow the pipeline of manually designing the network architect ures based on task-specific expertise prior knowledge and careful network tunings, leading to the inflexibility for various complicated scenarios in practice. Motivated by addressing this problem, we propose an efficient greedy neural architecture search approach (GNAS) to automatically discover the optimal tree-like deep architecture for multi-attribute learning. In a greedy manner, GNAS divides the optimization of global architecture into the optimizations of individual connections step by step. By iteratively updating the local architectures, the global tree-like architecture gets converged where the bottom layers are shared across relevant attributes and the branches in top layers more encode attribute-specific features. Experiments on three benchmark multi-attribute datasets show the effectiveness and compactness of neural architectures derived by GNAS, and also demonstrate the efficiency of GNAS in searching neural architectures.
Despite remarkable progress achieved, most neural architecture search (NAS) methods focus on searching for one single accurate and robust architecture. To further build models with better generalization capability and performance, model ensemble is u sually adopted and performs better than stand-alone models. Inspired by the merits of model ensemble, we propose to search for multiple diverse models simultaneously as an alternative way to find powerful models. Searching for ensembles is non-trivial and has two key challenges: enlarged search space and potentially more complexity for the searched model. In this paper, we propose a one-shot neural ensemble architecture search (NEAS) solution that addresses the two challenges. For the first challenge, we introduce a novel diversity-based metric to guide search space shrinking, considering both the potentiality and diversity of candidate operators. For the second challenge, we enable a new search dimension to learn layer sharing among different models for efficiency purposes. The experiments on ImageNet clearly demonstrate that our solution can improve the supernets capacity of ranking ensemble architectures, and further lead to better search results. The discovered architectures achieve superior performance compared with state-of-the-arts such as MobileNetV3 and EfficientNet families under aligned settings. Moreover, we evaluate the generalization ability and robustness of our searched architecture on the COCO detection benchmark and achieve a 3.1% improvement on AP compared with MobileNetV3. Codes and models are available at https://github.com/researchmm/NEAS.
130 - Yuanzheng Ci , Chen Lin , Ming Sun 2020
The automation of neural architecture design has been a coveted alternative to human experts. Recent works have small search space, which is easier to optimize but has a limited upper bound of the optimal solution. Extra human design is needed for th ose methods to propose a more suitable space with respect to the specific task and algorithm capacity. To further enhance the degree of automation for neural architecture search, we present a Neural Search-space Evolution (NSE) scheme that iteratively amplifies the results from the previous effort by maintaining an optimized search space subset. This design minimizes the necessity of a well-designed search space. We further extend the flexibility of obtainable architectures by introducing a learnable multi-branch setting. By employing the proposed method, a consistent performance gain is achieved during a progressive search over upcoming search spaces. We achieve 77.3% top-1 retrain accuracy on ImageNet with 333M FLOPs, which yielded a state-of-the-art performance among previous auto-generated architectures that do not involve knowledge distillation or weight pruning. When the latency constraint is adopted, our result also performs better than the previous best-performing mobile models with a 77.9% Top-1 retrain accuracy.
Automated machine learning (AutoML) has seen a resurgence in interest with the boom of deep learning over the past decade. In particular, Neural Architecture Search (NAS) has seen significant attention throughout the AutoML research community, and ha s pushed forward the state-of-the-art in a number of neural models to address grid-like data such as texts and images. However, very litter work has been done about Graph Neural Networks (GNN) learning on unstructured network data. Given the huge number of choices and combinations of components such as aggregator and activation function, determining the suitable GNN structure for a specific problem normally necessitates tremendous expert knowledge and laborious trails. In addition, the slight variation of hyper parameters such as learning rate and dropout rate could dramatically hurt the learning capacity of GNN. In this paper, we propose a novel AutoML framework through the evolution of individual models in a large GNN architecture space involving both neural structures and learning parameters. Instead of optimizing only the model structures with fixed parameter settings as existing work, an alternating evolution process is performed between GNN structures and learning parameters to dynamically find the best fit of each other. To the best of our knowledge, this is the first work to introduce and evaluate evolutionary architecture search for GNN models. Experiments and validations demonstrate that evolutionary NAS is capable of matching existing state-of-the-art reinforcement learning approaches for both the semi-supervised transductive and inductive node representation learning and classification.
Performing analytical tasks over graph data has become increasingly interesting due to the ubiquity and large availability of relational information. However, unlike images or sentences, there is no notion of sequence in networks. Nodes (and edges) f ollow no absolute order, and it is hard for traditional machine learning (ML) algorithms to recognize a pattern and generalize their predictions on this type of data. Graph Neural Networks (GNN) successfully tackled this problem. They became popular after the generalization of the convolution concept to the graph domain. However, they possess a large number of hyperparameters and their design and optimization is currently hand-made, based on heuristics or empirical intuition. Neural Architecture Search (NAS) methods appear as an interesting solution to this problem. In this direction, this paper compares two NAS methods for optimizing GNN: one based on reinforcement learning and a second based on evolutionary algorithms. Results consider 7 datasets over two search spaces and show that both methods obtain similar accuracies to a random search, raising the question of how many of the search space dimensions are actually relevant to the problem.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا