ﻻ يوجد ملخص باللغة العربية
Sasakian manifolds are odd-dimensional counterpart to Kahler manifolds. They can be defined as contact manifolds equipped with an invariant Kahler structure on their symplectic cone. The quotient of this cone by the homothety action is a complex manifold called Vaisman. We study harmonic forms and Hodge decomposition on Vaisman and Sasakian manifolds. We construct a Lie superalgebra associated to a Sasakian manifold in the same way as the Kahler supersymmetry algebra is associated to a Kahler manifold. We use this construction to produce a self-contained, coordinate-free proof of the results by Tachibana, Kashiwada and Sato on the decomposition of harmonic forms and cohomology of Sasakian and Vaisman manifolds. In the last section, we compute the supersymmetry algebra of Sasakian manifolds explicitly.
A compact complex manifold $V$ is called Vaisman if it admits an Hermitian metric which is conformal to a Kahler one, and a non-isometric conformal action by $mathbb C$. It is called quasi-regular if the $mathbb C$-action has closed orbits. In this c
Arising from a topological twist of $mathcal{N} = 4$ super Yang-Mills theory are the Kapustin-Witten equations, a family of gauge-theoretic equations on a four-manifold parametrized by $tinmathbb{P}^1$. The parameter corresponds to a linear combinati
We show that the exterior derivative operator on a symplectic manifold has a natural decomposition into two linear differential operators, analogous to the Dolbeault operators in complex geometry. These operators map primitive forms into primitive fo
We introduce filtered cohomologies of differential forms on symplectic manifolds. They generalize and include the cohomologies discussed in Paper I and II as a subset. The filtered cohomologies are finite-dimensional and can be associated with differ
We study a natural contact instanton (CI) equation on gauge fields over 7-dimensional Sasakian manifolds, which is closely related both to the transverse Hermitian Yang-Mills (tHYM) condition and the G_2-instanton equation. We obtain, by Fredholm the