ﻻ يوجد ملخص باللغة العربية
We introduce filtered cohomologies of differential forms on symplectic manifolds. They generalize and include the cohomologies discussed in Paper I and II as a subset. The filtered cohomologies are finite-dimensional and can be associated with differential elliptic complexes. Algebraically, we show that the filtered cohomologies give a two-sided resolution of Lefschetz maps, and thereby, they are directly related to the kernels and cokernels of the Lefschetz maps. We also introduce a novel, non-associative product operation on differential forms for symplectic manifolds. This product generates an A-infinity algebra structure on forms that underlies the filtered cohomologies and gives them a ring structure. As an application, we demonstrate how the ring structure of the filtered cohomologies can distinguish different symplectic four-manifolds in the context of a circle times a fibered three-manifold.
We show that the exterior derivative operator on a symplectic manifold has a natural decomposition into two linear differential operators, analogous to the Dolbeault operators in complex geometry. These operators map primitive forms into primitive fo
We study symplectic Laplacians on compact symplectic manifolds with boundary. These Laplacians are associated with symplectic cohomologies of differential forms and can be of fourth-order. We introduce several natural boundary conditions on different
Recently, Tsai-Tseng-Yau constructed new invariants of symplectic manifolds: a sequence of Aoo-algebras built of differential forms on the symplectic manifold. We show that these symplectic Aoo-algebras have a simple topological interpretation. Namel
We introduce new boundary conditions for differential forms on symplectic manifolds with boundary. These boundary conditions, dependent on the symplectic structure, allows us to write down elliptic boundary value problems for both second-order and fo
We analyze two different fibrations of a link complement M constructed by McMullen-Taubes, and studied further by Vidussi. These examples lead to inequivalent symplectic forms on a 4-manifold X = S x M, which can be distinguished by the dimension of