ترغب بنشر مسار تعليمي؟ اضغط هنا

Instantons on Sasakian 7-manifolds

79   0   0.0 ( 0 )
 نشر من قبل Luis Ernesto Portilla Paladines
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a natural contact instanton (CI) equation on gauge fields over 7-dimensional Sasakian manifolds, which is closely related both to the transverse Hermitian Yang-Mills (tHYM) condition and the G_2-instanton equation. We obtain, by Fredholm theory, a finite-dimensional local model for the moduli space of irreducible solutions. We derive cohomological conditions for smoothness, and we express its dimension in terms of the index of a transverse elliptic operator. Finally we show that the moduli space of selfdual contact instantons (ASDI) is Kahler, in the Sasakian case. As an instance of concrete interest, we specialise to transversely holomorphic Sasakian bundles over contact Calabi-Yau 7-manifolds, and we show that, in this context, the notions of contact instanton, integrable G_2-instanton and HYM connection coincide.



قيم البحث

اقرأ أيضاً

In this paper, we obtain some sufficient conditions for a 3-dimensional compact trans-Sasakian manifold of type $(alpha ,beta)$ to be homothetic to a Sasakian manifold. A characterization of a 3-dimensional cosymplectic manifold is also obtained.
96 - Paul W.Y. Lee 2015
Measure contraction property is a synthetic Ricci curvature lower bound for metric measure spaces. We consider Sasakian manifolds with non-negative Tanaka-Webster Ricci curvature equipped with the metric measure space structure defined by the sub-Rie mannian metric and the Popp measure. We show that these spaces satisfy the measure contraction property $MCP(0,N)$ for some positive integer $N$. We also show that the same result holds when the Sasakian manifold is equipped with a family of Riemannian metrics extending the sub-Riemannian one.
114 - V. Mu~noz , M. Schutt , A. Tralle 2020
We study several questions on the existence of negative Sasakian structures on simply connected rational homology spheres and on Smale-Barden manifolds of the form $#_k(S^2times S^3)$. First, we prove that any simply connected rational homology spher e admitting positive Sasakian structures also admits a negative one. This result answers the question, posed by Boyer and Galicki in their book [BG], of determining which simply connected rational homology spheres admit both negative and positive Sasakian structures. Second, we prove that the connected sum $#_k(S^2times S^3)$ admits negative quasi-regular Sasakian structures for any $k$. This yields a complete answer to another question posed in [BG].
Sasakian manifolds are odd-dimensional counterpart to Kahler manifolds. They can be defined as contact manifolds equipped with an invariant Kahler structure on their symplectic cone. The quotient of this cone by the homothety action is a complex mani fold called Vaisman. We study harmonic forms and Hodge decomposition on Vaisman and Sasakian manifolds. We construct a Lie superalgebra associated to a Sasakian manifold in the same way as the Kahler supersymmetry algebra is associated to a Kahler manifold. We use this construction to produce a self-contained, coordinate-free proof of the results by Tachibana, Kashiwada and Sato on the decomposition of harmonic forms and cohomology of Sasakian and Vaisman manifolds. In the last section, we compute the supersymmetry algebra of Sasakian manifolds explicitly.
Einstein like $(varepsilon)$-para Sasakian manifolds are introduced. For an $(varepsilon) $-para Sasakian manifold to be Einstein like, a necessary and sufficient condition in terms of its curvature tensor is obtained. The scalar curvature of an Eins tein like $(varepsilon) $-para Sasakian manifold is obtained and it is shown that the scalar curvature in this case must satisfy certain differential equation. A necessary and sufficient condition for an $(varepsilon) $-almost paracontact metric hypersurface of an indefinite locally Riemannian product manifold to be $(varepsilon) $-para Sasakian is obtained and it is proved that the $(varepsilon) $-para Sasakian hypersurface of an indefinite locally Riemannian product manifold of almost constant curvature is always Einstein like.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا