ﻻ يوجد ملخص باللغة العربية
The ability to walk in new scenarios is a key milestone on the path toward real-world applications of legged robots. In this work, we introduce Meta Strategy Optimization, a meta-learning algorithm for training policies with latent variable inputs that can quickly adapt to new scenarios with a handful of trials in the target environment. The key idea behind MSO is to expose the same adaptation process, Strategy Optimization (SO), to both the training and testing phases. This allows MSO to effectively learn locomotion skills as well as a latent space that is suitable for fast adaptation. We evaluate our method on a real quadruped robot and demonstrate successful adaptation in various scenarios, including sim-to-real transfer, walking with a weakened motor, or climbing up a slope. Furthermore, we quantitatively analyze the generalization capability of the trained policy in simulated environments. Both real and simulated experiments show that our method outperforms previous methods in adaptation to novel tasks.
Animals have remarkable abilities to adapt locomotion to different terrains and tasks. However, robots trained by means of reinforcement learning are typically able to solve only a single task and a transferred policy is usually inferior to that trai
Meta-learning algorithms can accelerate the model-based reinforcement learning (MBRL) algorithms by finding an initial set of parameters for the dynamical model such that the model can be trained to match the actual dynamics of the system with only a
Many meta-learning approaches for few-shot learning rely on simple base learners such as nearest-neighbor classifiers. However, even in the few-shot regime, discriminatively trained linear predictors can offer better generalization. We propose to use
Power control in decentralized wireless networks poses a complex stochastic optimization problem when formulated as the maximization of the average sum rate for arbitrary interference graphs. Recent work has introduced data-driven design methods that
This paper studies fast adaptive beamforming optimization for the signal-to-interference-plus-noise ratio balancing problem in a multiuser multiple-input single-output downlink system. Existing deep learning based approaches to predict beamforming re