ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Power Control Adaptation via Meta-Learning for Random Edge Graph Neural Networks

187   0   0.0 ( 0 )
 نشر من قبل Ivana Nikoloska
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Power control in decentralized wireless networks poses a complex stochastic optimization problem when formulated as the maximization of the average sum rate for arbitrary interference graphs. Recent work has introduced data-driven design methods that leverage graph neural network (GNN) to efficiently parametrize the power control policy mapping channel state information (CSI) to the power vector. The specific GNN architecture, known as random edge GNN (REGNN), defines a non-linear graph convolutional architecture whose spatial weights are tied to the channel coefficients, enabling a direct adaption to channel conditions. This paper studies the higher-level problem of enabling fast adaption of the power control policy to time-varying topologies. To this end, we apply first-order meta-learning on data from multiple topologies with the aim of optimizing for a few-shot adaptation to new network configurations.

قيم البحث

اقرأ أيضاً

In this paper, we consider the problem of power control for a wireless network with an arbitrarily time-varying topology, including the possible addition or removal of nodes. A data-driven design methodology that leverages graph neural networks (GNNs ) is adopted in order to efficiently parametrize the power control policy mapping the channel state information (CSI) to transmit powers. The specific GNN architecture, known as random edge GNN (REGNN), defines a non-linear graph convolutional filter whose spatial weights are tied to the channel coefficients. While prior work assumed a joint training approach whereby the REGNN-based policy is shared across all topologies, this paper targets adaptation of the power control policy based on limited CSI data regarding the current topology. To this end, we propose both black-box and modular meta-learning techniques. Black-box meta-learning optimizes a general-purpose adaptation procedure via (stochastic) gradient descent, while modular meta-learning finds a set of reusable modules that can form components of a solution for any new network topology. Numerical results validate the benefits of meta-learning for power control problems over joint training schemes, and demonstrate the advantages of modular meta-learning when data availability is extremely limited.
319 - Shuai Wang , Rui Wang , Qi Hao 2020
While machine-type communication (MTC) devices generate massive data, they often cannot process this data due to limited energy and computation power. To this end, edge intelligence has been proposed, which collects distributed data and performs mach ine learning at the edge. However, this paradigm needs to maximize the learning performance instead of the communication throughput, for which the celebrated water-filling and max-min fairness algorithms become inefficient since they allocate resources merely according to the quality of wireless channels. This paper proposes a learning centric power allocation (LCPA) method, which allocates radio resources based on an empirical classification error model. To get insights into LCPA, an asymptotic optimal solution is derived. The solution shows that the transmit powers are inversely proportional to the channel gain, and scale exponentially with the learning parameters. Experimental results show that the proposed LCPA algorithm significantly outperforms other power allocation algorithms.
As power systems are undergoing a significant transformation with more uncertainties, less inertia and closer to operation limits, there is increasing risk of large outages. Thus, there is an imperative need to enhance grid emergency control to maint ain system reliability and security. Towards this end, great progress has been made in developing deep reinforcement learning (DRL) based grid control solutions in recent years. However, existing DRL-based solutions have two main limitations: 1) they cannot handle well with a wide range of grid operation conditions, system parameters, and contingencies; 2) they generally lack the ability to fast adapt to new grid operation conditions, system parameters, and contingencies, limiting their applicability for real-world applications. In this paper, we mitigate these limitations by developing a novel deep meta reinforcement learning (DMRL) algorithm. The DMRL combines the meta strategy optimization together with DRL, and trains policies modulated by a latent space that can quickly adapt to new scenarios. We test the developed DMRL algorithm on the IEEE 300-bus system. We demonstrate fast adaptation of the meta-trained DRL polices with latent variables to new operating conditions and scenarios using the proposed method and achieve superior performance compared to the state-of-the-art DRL and model predictive control (MPC) methods.
In recent years, graph neural networks (GNNs) have been widely adopted in the representation learning of graph-structured data and provided state-of-the-art performance in various applications such as link prediction, node classification, and recomme ndation. Motivated by recent advances of self-supervision for representation learning in natural language processing and computer vision, self-supervised learning has been recently studied to leverage unlabeled graph-structured data. However, employing self-supervision tasks as auxiliary tasks to assist a primary task has been less explored in the literature on graphs. In this paper, we propose a novel self-supervised auxiliary learning framework to effectively learn graph neural networks. Moreover, this work is the first study showing that a meta-path prediction is beneficial as a self-supervised auxiliary task for heterogeneous graphs. Our method is learning to learn a primary task with various auxiliary tasks to improve generalization performance. The proposed method identifies an effective combination of auxiliary tasks and automatically balances them to improve the primary task. Our methods can be applied to any graph neural network in a plug-in manner without manual labeling or additional data. Also, it can be extended to any other auxiliary tasks. Our experiments demonstrate that the proposed method consistently improves the performance of node classification and link prediction.
This paper studies fast adaptive beamforming optimization for the signal-to-interference-plus-noise ratio balancing problem in a multiuser multiple-input single-output downlink system. Existing deep learning based approaches to predict beamforming re ly on the assumption that the training and testing channels follow the same distribution which may not hold in practice. As a result, a trained model may lead to performance deterioration when the testing network environment changes. To deal with this task mismatch issue, we propose two offline adaptive algorithms based on deep transfer learning and meta-learning, which are able to achieve fast adaptation with the limited new labelled data when the testing wireless environment changes. Furthermore, we propose an online algorithm to enhance the adaptation capability of the offline meta algorithm in realistic non-stationary environments. Simulation results demonstrate that the proposed adaptive algorithms achieve much better performance than the direct deep learning algorithm without adaptation in new environments. The meta-learning algorithm outperforms the deep transfer learning algorithm and achieves near optimal performance. In addition, compared to the offline meta-learning algorithm, the proposed online meta-learning algorithm shows superior adaption performance in changing environments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا