ﻻ يوجد ملخص باللغة العربية
We prove distributional limit theorems for the length of the largest convex minorant of a one-dimensional random walk with independent identically distributed increments. Depending on the increment law, there are several regimes with different limit distributions for this length. Among other tools, a representation of the convex minorant of a random walk in terms of uniform random permutations is utilized.
We consider a nearest-neighbor, one-dimensional random walk ${X_n}_{ngeq 0}$ in a random i.i.d. environment, in the regime where the walk is transient with speed v_P > 0 and there exists an $sin(1,2)$ such that the annealed law of $n^{-1/s} (X_n - n
We consider the sums $S_n=xi_1+cdots+xi_n$ of independent identically distributed random variables. We do not assume that the $xi$s have a finite mean. Under subexponential type conditions on distribution of the summands, we find the asymptotics of t
Domains of attraction are identified for the universality classes of one-point asymptotic fluctuations for the Kardar-Parisi-Zhang (KPZ) equation with general initial data. The criterion is based on a large deviation rate function for the rescaled in
Motivated by storage applications, we study the following data structure problem: An encoder wishes to store a collection of jointly-distributed files $overline{X}:=(X_1,X_2,ldots, X_n) sim mu$ which are emph{correlated} ($H_mu(overline{X}) ll sum_i
We derive properties of the rate function in Varadhans (annealed) large deviation principle for multidimensional, ballistic random walk in random environment, in a certain neighborhood of the zero set of the rate function. Our approach relates the LD