ترغب بنشر مسار تعليمي؟ اضغط هنا

How flat is flat in random interface growth?

131   0   0.0 ( 0 )
 نشر من قبل Daniel Remenik
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Domains of attraction are identified for the universality classes of one-point asymptotic fluctuations for the Kardar-Parisi-Zhang (KPZ) equation with general initial data. The criterion is based on a large deviation rate function for the rescaled initial data, which arises naturally from the Hopf-Cole transformation. This allows us, in particular, to distinguish the domains of attraction of curved, flat, and Brownian initial data, and to identify the boundary between the curved and flat domains of attraction, which turns out to correspond to square root initial data. The distribution of the asymptotic one-point fluctuations is characterized by means of a variational formula written in terms of certain limiting processes (arising as subsequential limits of the spatial fluctuations of KPZ equation with narrow wedge initial data, as shown in [CH16]) which are widely believed to coincide with the Airy$_2$ process. In order to identify these distributions for general initial data, we extend earlier results on continuum statistics of the Airy$_2$ process to probabilities involving the process on the entire line. In particular, this allows us to write an explicit Fredholm determinant formula for the case of square root initial data.



قيم البحث

اقرأ أيضاً

We study the survival probability and the growth rate for branching random walks in random environment (BRWRE). The particles perform simple symmetric random walks on the $d$-dimensional integer lattice, while at each time unit, they split into indep endent copies according to time-space i.i.d. offspring distributions. The BRWRE is naturally associated with the directed polymers in random environment (DPRE), for which the quantity called the free energy is well studied. We discuss the survival probability (both global and local) for BRWRE and give a criterion for its positivity in terms of the free energy of the associated DPRE. We also show that the global growth rate for the number of particles in BRWRE is given by the free energy of the associated DPRE, though the local growth rateis given by the directional free energy.
We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infini te volume in dimension $d=2$, while there are ``gradient Gibbs measures describing an infinite-volume distribution for the increments of the field, as was shown by Funaki and Spohn. In the present paper we show that adding a disorder term prohibits the existence of such gradient Gibbs measures for general interaction potentials in $d=2$. This nonexistence result generalizes the simple case of Gaussian fields where it follows from an explicit computation. In $d=3$ where random gradient Gibbs measures are expected to exist, our method provides a lower bound of the order of the inverse of the distance on the decay of correlations of Gibbs expectations w.r.t. the distribution of the random environment.
We study a geometric variational problem arising from modeling two-dimensional charged drops of a perfectly conducting liquid in the presence of an external potential. We characterize the semicontinuous envelope of the energy in terms of a parameter measuring the relative strength of the Coulomb interaction. As a consequence, when the potential is confining and the Coulomb repulsion strength is below a critical value, we show existence and partial regularity of volume-constrained minimizers. We also derive the Euler--Lagrange equation satisfied by regular critical points, expressing the first variation of the Coulombic energy in terms of the normal $frac12$-derivative of the capacitary potential.
We study the phenomenon of super-roughening found on surfaces growing on disordered substrates. We consider a one-dimensional version of the problem for which the pure, ordered model exhibits a roughening phase transition. Extensive numerical simulat ions combined with analytical approximations indicate that super-roughening is a regime of asymptotically flat surfaces with non-trivial, rough short-scale features arising from the competition between surface tension and disorder. Based on this evidence and on previous simulations of the two-dimensional Random sine-Gordon model [Sanchez et al., Phys. Rev. E 62, 3219 (2000)], we argue that this scenario is general and explains equally well the hitherto poorly understood two-dimensional case.
162 - Yueyun Hu , Nobuo Yoshida 2007
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d ge 3$ and the environment is not too random, then, the total population gro ws as fast as its expectation with strictly positive probability. If,on the other hand, $d le 2$, or the environment is ``random enough, then the total population grows strictly slower than its expectation almost surely. We show the equivalence between the slow population growth and a natural localization property in terms of replica overlap. We also prove a certain stronger localization property, whenever the total population grows strictly slower than its expectation almost surely.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا