ﻻ يوجد ملخص باللغة العربية
We derive properties of the rate function in Varadhans (annealed) large deviation principle for multidimensional, ballistic random walk in random environment, in a certain neighborhood of the zero set of the rate function. Our approach relates the LDP to that of regeneration times and distances. The analysis of the latter is possible due to the i.i.d. structure of regenerations.
We study one-dimensional nearest neighbour random walk in site-random environment. We establish precise (sharp) large deviations in the so-called ballistic regime, when the random walk drifts to the right with linear speed. In the sub-ballistic regim
We consider a one-dimensional recurrent random walk in random environment (RWRE). We show that the - suitably centered - empirical distributions of the RWRE converge weakly to a certain limit law which describes the stationary distribution of a rando
We consider the branching process in random environment ${Z_n}_{ngeq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We describe precise a
In this paper, we are concerned with SIR epidemics in a random environment on complete graphs, where every edges are assigned with i.i.d. weights. Our main results give large and moderate deviation principles of sample paths of this model.
We consider a nearest-neighbor, one-dimensional random walk ${X_n}_{ngeq 0}$ in a random i.i.d. environment, in the regime where the walk is transient with speed v_P > 0 and there exists an $sin(1,2)$ such that the annealed law of $n^{-1/s} (X_n - n