ترغب بنشر مسار تعليمي؟ اضغط هنا

Function Preserving Projection for Scalable Exploration of High-Dimensional Data

51   0   0.0 ( 0 )
 نشر من قبل Shusen Liu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present function preserving projections (FPP), a scalable linear projection technique for discovering interpretable relationships in high-dimensional data. Conventional dimension reduction methods aim to maximally preserve the global and/or local geometric structure of a dataset. However, in practice one is often more interested in determining how one or multiple user-selected response function(s) can be explained by the data. To intuitively connect the responses to the data, FPP constructs 2D linear embeddings optimized to reveal interpretable yet potentially non-linear patterns of the response functions. More specifically, FPP is designed to (i) produce human-interpretable embeddings; (ii) capture non-linear relationships; (iii) allow the simultaneous use of multiple response functions; and (iv) scale to millions of samples. Using FPP on real-world datasets, one can obtain fundamentally new insights about high-dimensional relationships in large-scale data that could not be achieved using existing dimension reduction methods.



قيم البحث

اقرأ أيضاً

High dimensional data analysis for exploration and discovery includes three fundamental tasks: dimensionality reduction, clustering, and visualization. When the three associated tasks are done separately, as is often the case thus far, inconsistencie s can occur among the tasks in terms of data geometry and others. This can lead to confusing or misleading data interpretation. In this paper, we propose a novel neural network-based method, called Consistent Representation Learning (CRL), to accomplish the three associated tasks end-to-end and improve the consistencies. The CRL network consists of two nonlinear dimensionality reduction (NLDR) transformations: (1) one from the input data space to the latent feature space for clustering, and (2) the other from the clustering space to the final 2D or 3D space for visualization. Importantly, the two NLDR transformations are performed to best satisfy local geometry preserving (LGP) constraints across the spaces or network layers, to improve data consistencies along with the processing flow. Also, we propose a novel metric, clustering-visualization inconsistency (CVI), for evaluating the inconsistencies. Extensive comparative results show that the proposed CRL neural network method outperforms the popular t-SNE and UMAP-based and other contemporary clustering and visualization algorithms in terms of evaluation metrics and visualization.
265 - Jie Fu , Xue Geng , Zhijian Duan 2020
Knowledge Distillation (KD) is a common method for transferring the ``knowledge learned by one machine learning model (the textit{teacher}) into another model (the textit{student}), where typically, the teacher has a greater capacity (e.g., more para meters or higher bit-widths). To our knowledge, existing methods overlook the fact that although the student absorbs extra knowledge from the teacher, both models share the same input data -- and this data is the only medium by which the teachers knowledge can be demonstrated. Due to the difference in model capacities, the student may not benefit fully from the same data points on which the teacher is trained. On the other hand, a human teacher may demonstrate a piece of knowledge with individualized examples adapted to a particular student, for instance, in terms of her cultural background and interests. Inspired by this behavior, we design data augmentation agents with distinct roles to facilitate knowledge distillation. Our data augmentation agents generate distinct training data for the teacher and student, respectively. We find empirically that specially tailored data points enable the teachers knowledge to be demonstrated more effectively to the student. We compare our approach with existing KD methods on training popular neural architectures and demonstrate that role-wise data augmentation improves the effectiveness of KD over strong prior approaches. The code for reproducing our results can be found at https://github.com/bigaidream-projects/role-kd
We propose a novel hardware and software co-exploration framework for efficient neural architecture search (NAS). Different from existing hardware-aware NAS which assumes a fixed hardware design and explores the neural architecture search space only, our framework simultaneously explores both the architecture search space and the hardware design space to identify the best neural architecture and hardware pairs that maximize both test accuracy and hardware efficiency. Such a practice greatly opens up the design freedom and pushes forward the Pareto frontier between hardware efficiency and test accuracy for better design tradeoffs. The framework iteratively performs a two-level (fast and slow) exploration. Without lengthy training, the fast exploration can effectively fine-tune hyperparameters and prune inferior architectures in terms of hardware specifications, which significantly accelerates the NAS process. Then, the slow exploration trains candidates on a validation set and updates a controller using the reinforcement learning to maximize the expected accuracy together with the hardware efficiency. Experiments on ImageNet show that our co-exploration NAS can find the neural architectures and associated hardware design with the same accuracy, 35.24% higher throughput, 54.05% higher energy efficiency and 136x reduced search time, compared with the state-of-the-art hardware-aware NAS.
We introduce giotto-tda, a Python library that integrates high-performance topological data analysis with machine learning via a scikit-learn-compatible API and state-of-the-art C++ implementations. The librarys ability to handle various types of dat a is rooted in a wide range of preprocessing techniques, and its strong focus on data exploration and interpretability is aided by an intuitive plotting API. Source code, binaries, examples, and documentation can be found at https://github.com/giotto-ai/giotto-tda.
The importance of explainability in machine learning continues to grow, as both neural-network architectures and the data they model become increasingly complex. Unique challenges arise when a models input features become high dimensional: on one han d, principled model-agnostic approaches to explainability become too computationally expensive; on the other, more efficient explainability algorithms lack natural interpretations for general users. In this work, we introduce a framework for human-interpretable explainability on high-dimensional data, consisting of two modules. First, we apply a semantically meaningful latent representation, both to reduce the raw dimensionality of the data, and to ensure its human interpretability. These latent features can be learnt, e.g. explicitly as disentangled representations or implicitly through image-to-image translation, or they can be based on any computable quantities the user chooses. Second, we adapt the Shapley paradigm for model-agnostic explainability to operate on these latent features. This leads to interpretable model explanations that are both theoretically controlled and computationally tractable. We benchmark our approach on synthetic data and demonstrate its effectiveness on several image-classification tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا