ﻻ يوجد ملخص باللغة العربية
We introduce giotto-tda, a Python library that integrates high-performance topological data analysis with machine learning via a scikit-learn-compatible API and state-of-the-art C++ implementations. The librarys ability to handle various types of data is rooted in a wide range of preprocessing techniques, and its strong focus on data exploration and interpretability is aided by an intuitive plotting API. Source code, binaries, examples, and documentation can be found at https://github.com/giotto-ai/giotto-tda.
Statistical analysis on object data presents many challenges. Basic summaries such as means and variances are difficult to compute. We apply ideas from topology to study object data. We present a framework for using persistence landscapes to vectoriz
A relatively new set of transport-based transforms (CDT, R-CDT, LOT) have shown their strength and great potential in various image and data processing tasks such as parametric signal estimation, classification, cancer detection among many others. It
Topological data analysis (TDA) has emerged as one of the most promising techniques to reconstruct the unknown shapes of high-dimensional spaces from observed data samples. TDA, thus, yields key shape descriptors in the form of persistent topological
The usability and practicality of any machine learning (ML) applications are largely influenced by two critical but hard-to-attain factors: low latency and low cost. Unfortunately, achieving low latency and low cost is very challenging when ML depend
Incremental gradient (IG) methods, such as stochastic gradient descent and its variants are commonly used for large scale optimization in machine learning. Despite the sustained effort to make IG methods more data-efficient, it remains an open questi