We provide a systematic analysis of three-dimensional N = 2 extended Bargmann superalgebra and its Newton-Hooke, Lifshitz and Schrodinger extensions. These algebras admit invariant non-degenerate bi-linear forms which we utilized to construct corresponding Chern-Simons supergravity actions.
The locally supersymmetric extension of the most general gravity theory in three dimensions leading to first order field equations for the vielbein and the spin connection is constructed. Apart from the Einstein-Hilbert term with cosmological constan
t, the gravitational sector contains the Lorentz-Chern-Simons form and a term involving the torsion each with arbitrary couplings. The supersymmetric extension is carried out for vanishing and negative effective cosmological constant, and it is shown that the action can be written as a Chern-Simons theory for the supersymmetric extension of the Poincare and AdS groups, respectively. The construction can be simply carried out by making use of a duality map between different gravity theories discussed here, which relies on the different ways to make geometry emerge from a single gauge potential. The extension for N =p+q gravitini is also performed.
We construct finite- and infinite-dimensional non-relativistic extensions of the Newton-Hooke and Carroll (A)dS algebras using the algebra expansion method, starting from the (anti-)de Sitter relativistic algebra in D dimensions. These algebras are a
lso shown to be embedded in different affine Kac-Moody algebras. In the three-dimensional case, we construct Chern-Simons actions invariant under these symmetries. This leads to a sequence of non-relativistic gravity theories, where the simplest examples correspond to extended Newton-Hooke and extended (post-)Newtonian gravity together with their Carrollian counterparts.
We present a three dimensional non-relativistic model of gravity that is invariant under the central extension of the symmetry group that leaves the recently constructed Newtonian gravity action invariant. We show that the model arises from the contr
action of a bi-metric model that is the sum of the Einstein gravity in Lorentzian and the Euclidean signatures. We also present the supersymmetric completion of this action which provides one of the very few examples of an action for non-relativistic supergravity.
We provide a Lie algebra expansion procedure to construct three-dimensional higher-order Schrodinger algebras which relies on a particular subalgebra of the four-dimensional relativistic conformal algebra. In particular, we reproduce the extended Sch
rodinger algebra and provide a new higher-order Schrodinger algebra. The structure of this new algebra leads to a discussion on the uniqueness of the higher-order non-relativistic algebras. Especially, we show that the recent d-dimensional symmetry algebra of an action principle for Newtonian gravity is not uniquely defined but can accommodate three discrete parameters. For a particular choice of these parameters, the Bargmann algebra becomes a subalgebra of that extended algebra which allows one to introduce a mass current in a Bargmann-invariant sense to the extended theory.