ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional supergravity reloaded

110   0   0.0 ( 0 )
 نشر من قبل Alex Giacomini
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The locally supersymmetric extension of the most general gravity theory in three dimensions leading to first order field equations for the vielbein and the spin connection is constructed. Apart from the Einstein-Hilbert term with cosmological constant, the gravitational sector contains the Lorentz-Chern-Simons form and a term involving the torsion each with arbitrary couplings. The supersymmetric extension is carried out for vanishing and negative effective cosmological constant, and it is shown that the action can be written as a Chern-Simons theory for the supersymmetric extension of the Poincare and AdS groups, respectively. The construction can be simply carried out by making use of a duality map between different gravity theories discussed here, which relies on the different ways to make geometry emerge from a single gauge potential. The extension for N =p+q gravitini is also performed.

قيم البحث

اقرأ أيضاً

We provide a systematic analysis of three-dimensional N = 2 extended Bargmann superalgebra and its Newton-Hooke, Lifshitz and Schrodinger extensions. These algebras admit invariant non-degenerate bi-linear forms which we utilized to construct corresponding Chern-Simons supergravity actions.
We prove, by a direct dimensional reduction and an explicit construction of the group manifold, that the nonlinear sigma model of the dimensionally reduced three-dimensional A = R magical supergravity is F4(+4)/(USp(6)xSU(2)). This serves as a basis for the solution generating technique in this supergravity as well as allows to give the Lie algebraic characterizations to some of the parameters and functions in the original D = 5 Lagrangian. Generalizations to other magical supergravities are also discussed.
Based on recent discussions on the so-called unconventional supersymmetry, we propose a 5D Chern-Simons AdS-$mathcal{N}$-SUGRA formulation without gravitino fields and show that a residual local SUSY is preserved. We explore the properties of CS theo ries to find a solution to the field equations in a 5D manifold. With a Randall-Sundrum-type ansatz, we show that this particular dimensional reduction is compatible with SUSY, and some classes of 4D solutions are then analyzed.
We present a three dimensional non-relativistic model of gravity that is invariant under the central extension of the symmetry group that leaves the recently constructed Newtonian gravity action invariant. We show that the model arises from the contr action of a bi-metric model that is the sum of the Einstein gravity in Lorentzian and the Euclidean signatures. We also present the supersymmetric completion of this action which provides one of the very few examples of an action for non-relativistic supergravity.
We give a classification of fully supersymmetric chiral ${cal N}=(8,0)$ AdS$_3$ vacua in general three-dimensional half-maximal gauged supergravities coupled to matter. These theories exhibit a wealth of supersymmetric vacua with background isometrie s given by the supergroups OSp$(8|2,mathbb{R})$, F(4), SU$(4|1,1)$, and OSp$(4^*|4)$, respectively. We identify the associated embedding tensors and the structure of the associated gauge groups. We furthermore compute the mass spectra around these vacua. As an off-spin we include results for a number of ${cal N}=(7,0)$ vacua with supergroups OSp$(7|2,mathbb{R})$ and G$(3)$, respectively. We also comment on their possible higher-dimensional uplifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا