ﻻ يوجد ملخص باللغة العربية
We construct finite- and infinite-dimensional non-relativistic extensions of the Newton-Hooke and Carroll (A)dS algebras using the algebra expansion method, starting from the (anti-)de Sitter relativistic algebra in D dimensions. These algebras are also shown to be embedded in different affine Kac-Moody algebras. In the three-dimensional case, we construct Chern-Simons actions invariant under these symmetries. This leads to a sequence of non-relativistic gravity theories, where the simplest examples correspond to extended Newton-Hooke and extended (post-)Newtonian gravity together with their Carrollian counterparts.
We show that conformal Chern-Simons gravity in three dimensions has various holographic descriptions. They depend on the boundary conditions on the conformal equivalence class and the Weyl factor, even when the former is restricted to asymptotic Anti
This paper is withdrawn because its results have been previously reported in arxiv hep-th/0507200.
We define and discuss classical and quantum gravity in 2+1 dimensions in the Galilean limit. Although there are no Newtonian forces between massive objects in (2+1)-dimensional gravity, the Galilean limit is not trivial. Depending on the topology of
We provide a systematic analysis of three-dimensional N = 2 extended Bargmann superalgebra and its Newton-Hooke, Lifshitz and Schrodinger extensions. These algebras admit invariant non-degenerate bi-linear forms which we utilized to construct corresponding Chern-Simons supergravity actions.
The combined effects of the Lorentz-symmetry violating Chern-Simons and Ricci-Cotton actions are investigated for the Einstein-Hilbert gravity in the second order formalism modified by higher derivative terms, and their consequences on the spectrum o