ﻻ يوجد ملخص باللغة العربية
In this paper, we study one of generalized Heisenberg ferromagnet equations with self-consistent sources, namely, the so-called M-CIV equation with self-consistent sources (M-CIVESCS). The Lax representation of the M-CIVESCS is presented. We have shown that the M-CIVESCS and the CH equation with self-consistent sources (CHESCS) is geometrically equivalent each to other. The gauge equivalence between these equations is proved. Soliton (peakon) and pseudo-spherical surfaces induced by these equations are considered. The one peakon solution of the M-CIVESCS is presented.
Regarded as the integrable generalization of Camassa-Holm (CH) equation, the CH equation with self-consistent sources (CHESCS) is derived. The Lax representation of the CHESCS is presented. The conservation laws for CHESCS are constructed. The peakon
Series of deformed Camassa-Holm-type equations are constructed using the Lagrangian deformation and Loop algebra splittings. They are weakly integrable in the sense of modified Lax pairs.
The soliton solutions of the Camassa-Holm equation are derived by the implementation of the dressing method. The form of the one and two soliton solutions coincides with the form obtained by other methods.
We study the integrability and equivalence of a generalized Heisenberg ferromagnet-type equation (GHFE). The different forms of this equation as well as its reduction are presented. The Lax representation (LR) of the equation is obtained. We observe
We provide a construction of the two-component Camassa-Holm (CH-2) hierarchy employing a new zero-curvature formalism and identify and describe in detail the isospectral set associated to all real-valued, smooth, and bounded algebro-geometric solutio