ﻻ يوجد ملخص باللغة العربية
Regarded as the integrable generalization of Camassa-Holm (CH) equation, the CH equation with self-consistent sources (CHESCS) is derived. The Lax representation of the CHESCS is presented. The conservation laws for CHESCS are constructed. The peakon solution, N-soliton, N-cuspon, N-positon and N-negaton solutions of CHESCS are obtained by using Darboux transformation and the method of variation of constants.
In this paper, we study one of generalized Heisenberg ferromagnet equations with self-consistent sources, namely, the so-called M-CIV equation with self-consistent sources (M-CIVESCS). The Lax representation of the M-CIVESCS is presented. We have sho
The soliton solutions of the Camassa-Holm equation are derived by the implementation of the dressing method. The form of the one and two soliton solutions coincides with the form obtained by other methods.
We study the integrability and equivalence of a generalized Heisenberg ferromagnet-type equation (GHFE). The different forms of this equation as well as its reduction are presented. The Lax representation (LR) of the equation is obtained. We observe
An integrable semi-discretization of the Camassa-Holm equation is presented. The keys of its construction are bilinear forms and determinant structure of solutions of the CH equation. Determinant formulas of $N$-soliton solutions of the continuous an
In the present paper, we investigate some geometrical properties of the Camass-Holm equation (CHE). We establish the geometrical equivalence between the CHE and the M-CIV equation using a link with the motion of curves. We also show that these two equations are gauge equivalent each to other.