ﻻ يوجد ملخص باللغة العربية
We provide a construction of the two-component Camassa-Holm (CH-2) hierarchy employing a new zero-curvature formalism and identify and describe in detail the isospectral set associated to all real-valued, smooth, and bounded algebro-geometric solutions of the $n$th equation of the stationary CH-2 hierarchy as the real $n$-dimensional torus $mathbb{T}^n$. We employ Dubrovin-type equations for auxiliary divisors and certain aspects of direct and inverse spectral theory for self-adjoint singular Hamiltonian systems. In particular, we employ Weyl-Titchmarsh theory for singular (canonical) Hamiltonian systems. While we focus primarily on the case of stationary algebro-geometric CH-2 solutions, we note that the time-dependent case subordinates to the stationary one with respect to isospectral torus questions.
We consider a 3$times$3 spectral problem which generates four-component CH type systems. The bi-Hamiltonian structure and infinitely many conserved quantities are constructed for the associated hierarchy. Some possible reductions are also studied.
The soliton solutions of the Camassa-Holm equation are derived by the implementation of the dressing method. The form of the one and two soliton solutions coincides with the form obtained by other methods.
In this paper, we study the generalized Heisenberg ferromagnet equation, namely, the M-CVI equation. This equation is integrable. The integrable motion of the space curves induced by the M-CVI equation is presented. Using this result, the Lakshmanan
We show how the change from Eulerian to Lagrangian coordinates for the two-component Camassa-Holm system can be understood in terms of certain reparametrizations of the underlying isospectral problem. The respective coordinates correspond to differen
The Camassa-Holm equation (CH) is a well known integrable equation describing the velocity dynamics of shallow water waves. This equation exhibits spontaneous emergence of singular solutions (peakons) from smooth initial conditions. The CH equation h