ترغب بنشر مسار تعليمي؟ اضغط هنا

Real-valued algebro-geometric solutions of the two-component Camassa-Holm hierarchy

136   0   0.0 ( 0 )
 نشر من قبل Gerald Teschl
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a construction of the two-component Camassa-Holm (CH-2) hierarchy employing a new zero-curvature formalism and identify and describe in detail the isospectral set associated to all real-valued, smooth, and bounded algebro-geometric solutions of the $n$th equation of the stationary CH-2 hierarchy as the real $n$-dimensional torus $mathbb{T}^n$. We employ Dubrovin-type equations for auxiliary divisors and certain aspects of direct and inverse spectral theory for self-adjoint singular Hamiltonian systems. In particular, we employ Weyl-Titchmarsh theory for singular (canonical) Hamiltonian systems. While we focus primarily on the case of stationary algebro-geometric CH-2 solutions, we note that the time-dependent case subordinates to the stationary one with respect to isospectral torus questions.



قيم البحث

اقرأ أيضاً

We consider a 3$times$3 spectral problem which generates four-component CH type systems. The bi-Hamiltonian structure and infinitely many conserved quantities are constructed for the associated hierarchy. Some possible reductions are also studied.
The soliton solutions of the Camassa-Holm equation are derived by the implementation of the dressing method. The form of the one and two soliton solutions coincides with the form obtained by other methods.
In this paper, we study the generalized Heisenberg ferromagnet equation, namely, the M-CVI equation. This equation is integrable. The integrable motion of the space curves induced by the M-CVI equation is presented. Using this result, the Lakshmanan (geometrical) equivalence between the M-CVI equation and the two-component Camassa-Holm equation is established. Note that these equations are gauge equivalent each to other.
We show how the change from Eulerian to Lagrangian coordinates for the two-component Camassa-Holm system can be understood in terms of certain reparametrizations of the underlying isospectral problem. The respective coordinates correspond to differen t normalizations of an associated first order system. In particular, we will see that the two-component Camassa-Holm system in Lagrangian variables is completely integrable as well.
The Camassa-Holm equation (CH) is a well known integrable equation describing the velocity dynamics of shallow water waves. This equation exhibits spontaneous emergence of singular solutions (peakons) from smooth initial conditions. The CH equation h as been recently extended to a two-component integrable system (CH2), which includes both velocity and density variables in the dynamics. Although possessing peakon solutions in the velocity, the CH2 equation does not admit singular solutions in the density profile. We modify the CH2 system to allow dependence on average density as well as pointwise density. The modified CH2 system (MCH2) does admit peakon solutions in velocity and average density. We analytically identify the steepening mechanism that allows the singular solutions to emerge from smooth spatially-confined initial data. Numerical results for MCH2 are given and compared with the pure CH2 case. These numerics show that the modification in MCH2 to introduce average density has little short-time effect on the emergent dynamical properties. However, an analytical and numerical study of pairwise peakon interactions for MCH2 shows a new asymptotic feature. Namely, besides the expected soliton scattering behavior seen in overtaking and head-on peakon collisions, MCH2 also allows the phase shift of the peakon collision to diverge in certain parameter regimes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا