ﻻ يوجد ملخص باللغة العربية
A series of recent papers has used a parsing algorithm due to Shen et al. (2018) to recover phrase-structure trees based on proxies for syntactic depth. These proxy depths are obtained from the representations learned by recurrent language models augmented with mechanisms that encourage the (unsupervised) discovery of hierarchical structure latent in natural language sentences. Using the same parser, we show that proxies derived from a conventional LSTM language model produce trees comparably well to the specialized architectures used in previous work. However, we also provide a detailed analysis of the parsing algorithm, showing (1) that it is incomplete---that is, it can recover only a fraction of possible trees---and (2) that it has a marked bias for right-branching structures which results in inflated performance in right-branching languages like English. Our analysis shows that evaluating with biased parsing algorithms can inflate the apparent structural competence of language models.
One daunting problem for semantic parsing is the scarcity of annotation. Aiming to reduce nontrivial human labor, we propose a two-stage semantic parsing framework, where the first stage utilizes an unsupervised paraphrase model to convert an unlabel
We analyze several recent unsupervised constituency parsing models, which are tuned with respect to the parsing $F_1$ score on the Wall Street Journal (WSJ) development set (1,700 sentences). We introduce strong baselines for them, by training an exi
Most of the unsupervised dependency parsers are based on first-order probabilistic generative models that only consider local parent-child information. Inspired by second-order supervised dependency parsing, we proposed a second-order extension of un
We present a phenomenon-oriented comparative analysis of the two dominant approaches in task-independent semantic parsing: classic, knowledge-intensive and neural, data-intensive models. To reflect state-of-the-art neural NLP technologies, we introdu
We propose Semantic Parser Localizer (SPL), a toolkit that leverages Neural Machine Translation (NMT) systems to localize a semantic parser for a new language. Our methodology is to (1) generate training data automatically in the target language by a