ﻻ يوجد ملخص باللغة العربية
We present a phenomenon-oriented comparative analysis of the two dominant approaches in task-independent semantic parsing: classic, knowledge-intensive and neural, data-intensive models. To reflect state-of-the-art neural NLP technologies, we introduce a new target structure-centric parser that can produce semantic graphs much more accurately than previous data-driven parsers. We then show that, in spite of comparable performance overall, knowledge- and data-intensive models produce different types of errors, in a way that can be explained by their theoretical properties. This analysis leads to new directions for parser development.
We present SmartCrowd, a framework for optimizing collaborative knowledge-intensive crowdsourcing. SmartCrowd distinguishes itself by accounting for human factors in the process of assigning tasks to workers. Human factors designate workers expertise
We show that distributed Infrastructure-as-a-Service (IaaS) compute clouds can be effectively used for the analysis of high energy physics data. We have designed a distributed cloud system that works with any application using large input data sets r
AI systems have seen significant adoption in various domains. At the same time, further adoption in some domains is hindered by inability to fully trust an AI system that it will not harm a human. Besides the concerns for fairness, privacy, transpare
Process mining deals with extraction of knowledge from business process execution logs. Traditional process mining tasks, like process model generation or conformance checking, rely on a minimalistic feature set where each event is characterized only
Semantic parsing maps natural language (NL) utterances into logical forms (LFs), which underpins many advanced NLP problems. Semantic parsers gain performance boosts with deep neural networks, but inherit vulnerabilities against adversarial examples.