ﻻ يوجد ملخص باللغة العربية
Although the operator (spectral) norm is one of the most widely used metrics for covariance estimation, comparatively little is known about the fluctuations of error in this norm. To be specific, let $hatSigma$ denote the sample covariance matrix of $n$ observations in $mathbb{R}^p$ that arise from a population matrix $Sigma$, and let $T_n=sqrt{n}|hatSigma-Sigma|_{text{op}}$. In the setting where the eigenvalues of $Sigma$ have a decay profile of the form $lambda_j(Sigma)asymp j^{-2beta}$, we analyze how well the bootstrap can approximate the distribution of $T_n$. Our main result shows that up to factors of $log(n)$, the bootstrap can approximate the distribution of $T_n$ at the dimension-free rate of $n^{-frac{beta-1/2}{6beta+4}}$, with respect to the Kolmogorov metric. Perhaps surprisingly, a result of this type appears to be new even in settings where $p< n$. More generally, we discuss the consequences of this result beyond covariance matrices and show how the bootstrap can be used to estimate the errors of sketching algorithms in randomized numerical linear algebra (RandNLA). An illustration of these ideas is also provided with a climate data example.
Centered Gaussian random fields (GRFs) indexed by compacta such as smooth, bounded Euclidean domains or smooth, compact and orientable manifolds are determined by their covariance operators. We consider centered GRFs given as variational solutions to
We propose a Bayesian methodology for estimating spiked covariance matrices with jointly sparse structure in high dimensions. The spiked covariance matrix is reparametrized in terms of the latent factor model, where the loading matrix is equipped wit
We consider high-dimensional multivariate linear regression models, where the joint distribution of covariates and response variables is a multivariate normal distribution with a bandable covariance matrix. The main goal of this paper is to estimate
We consider testing the equality of two high-dimensional covariance matrices by carrying out a multi-level thresholding procedure, which is designed to detect sparse and faint differences between the covariances. A novel U-statistic composition is de
Testing large covariance matrices is of fundamental importance in statistical analysis with high-dimensional data. In the past decade, three types of test statistics have been studied in the literature: quadratic form statistics, maximum form statist