ﻻ يوجد ملخص باللغة العربية
Centered Gaussian random fields (GRFs) indexed by compacta such as smooth, bounded Euclidean domains or smooth, compact and orientable manifolds are determined by their covariance operators. We consider centered GRFs given as variational solutions to coloring operator equations driven by spatial white noise, with an elliptic self-adjoint pseudodifferential coloring operator from the Hormander class. This includes the Matern class of GRFs as a special case. Using biorthogonal multiresolution analyses on the manifold, we prove that the precision and covariance operators, respectively, may be identified with bi-infinite matrices and finite sections may be diagonally preconditioned rendering the condition number independent of the dimension $p$ of this section. We prove that a tapering strategy by thresholding applied on finite sections of the bi-infinite precision and covariance matrices results in optimally numerically sparse approximations. That is, asymptotically only linearly many nonzero matrix entries are sufficient to approximate the original section of the bi-infinite covariance or precision matrix using this tapering strategy to arbitrary precision. The locations of these nonzero matrix entries are known a priori. The tapered covariance or precision matrices may also be optimally diagonally preconditioned. Analysis of the relative size of the entries of the tapered covariance matrices motivates novel, multilevel Monte Carlo (MLMC) oracles for covariance estimation, in sample complexity that scales log-linearly with respect to the number $p$ of parameters. In addition, we propose and analyze a novel compressive algorithm for simulating and kriging of GRFs. The complexity (work and memory vs. accuracy) of these three algorithms scales near-optimally in terms of the number of parameters $p$ of the sample-wise approximation of the GRF in Sobolev scales.
Series expansions of isotropic Gaussian random fields on $mathbb{S}^2$ with independent Gaussian coefficients and localized basis functions are constructed. Such representations provide an alternative to the standard Karhunen-Lo`eve expansions of iso
Although the operator (spectral) norm is one of the most widely used metrics for covariance estimation, comparatively little is known about the fluctuations of error in this norm. To be specific, let $hatSigma$ denote the sample covariance matrix of
The asymptotic variance of the maximum likelihood estimate is proved to decrease when the maximization is restricted to a subspace that contains the true parameter value. Maximum likelihood estimation allows a systematic fitting of covariance models
In this talk I describe MAGIC, an efficient approach to covariance estimation and signal reconstruction for Gaussian random fields (MAGIC Allows Global Inference of Covariance). It solves a long-standing problem in the field of cosmic microwave backg
Gaussian process regression has proven very powerful in statistics, machine learning and inverse problems. A crucial aspect of the success of this methodology, in a wide range of applications to complex and real-world problems, is hierarchical modeli