ترغب بنشر مسار تعليمي؟ اضغط هنا

Fishers combined probability test for high-dimensional covariance matrices

177   0   0.0 ( 0 )
 نشر من قبل Lingzhou Xue
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Testing large covariance matrices is of fundamental importance in statistical analysis with high-dimensional data. In the past decade, three types of test statistics have been studied in the literature: quadratic form statistics, maximum form statistics, and their weighted combination. It is known that quadratic form statistics would suffer from low power against sparse alternatives and maximum form statistics would suffer from low power against dense alternatives. The weighted combination methods were introduced to enhance the power of quadratic form statistics or maximum form statistics when the weights are appropriately chosen. In this paper, we provide a new perspective to exploit the full potential of quadratic form statistics and maximum form statistics for testing high-dimensional covariance matrices. We propose a scale-invariant power enhancement test based on Fishers method to combine the p-values of quadratic form statistics and maximum form statistics. After carefully studying the asymptotic joint distribution of quadratic form statistics and maximum form statistics, we prove that the proposed combination method retains the correct asymptotic size and boosts the power against more general alternatives. Moreover, we demonstrate the finite-sample performance in simulation studies and a real application.



قيم البحث

اقرأ أيضاً

198 - Song Xi Chen , Bin Guo , Yumou Qiu 2019
We consider testing the equality of two high-dimensional covariance matrices by carrying out a multi-level thresholding procedure, which is designed to detect sparse and faint differences between the covariances. A novel U-statistic composition is de veloped to establish the asymptotic distribution of the thresholding statistics in conjunction with the matrix blocking and the coupling techniques. We propose a multi-thresholding test that is shown to be powerful in detecting sparse and weak differences between two covariance matrices. The test is shown to have attractive detection boundary and to attain the optimal minimax rate in the signal strength under different regimes of high dimensionality and the sparsity of the signal. Simulation studies are conducted to demonstrate the utility of the proposed test.
Covariance matrix testing for high dimensional data is a fundamental problem. A large class of covariance test statistics based on certain averaged spectral statistics of the sample covariance matrix are known to obey central limit theorems under the null. However, precise understanding for the power behavior of the corresponding tests under general alternatives remains largely unknown. This paper develops a general method for analyzing the power behavior of covariance test statistics via accurate non-asymptotic power expansions. We specialize our general method to two prototypical settings of testing identity and sphericity, and derive sharp power expansion for a number of widely used tests, including the likelihood ratio tests, Ledoit-Nagao-Wolfs test, Cai-Mas test and Johns test. The power expansion for each of those tests holds uniformly over all possible alternatives under mild growth conditions on the dimension-to-sample ratio. Interestingly, although some of those tests are previously known to share the same limiting power behavior under spiked covariance alternatives with a fixed number of spikes, our new power characterizations indicate that such equivalence fails when many spikes exist. The proofs of our results combine techniques from Poincare-type inequalities, random matrices and zonal polynomials.
298 - Guillaume Chauvet 2016
We prove that any implementation of pivotal sampling is more efficient than multinomial sampling. This property entails the weak consistency of the Horvitz-Thompson estimator and the existence of a conservative variance estimator. A small simulation study supports our findings.
Robust estimators of large covariance matrices are considered, comprising regularized (linear shrinkage) modifications of Maronnas classical M-estimators. These estimators provide robustness to outliers, while simultaneously being well-defined when t he number of samples does not exceed the number of variables. By applying tools from random matrix theory, we characterize the asymptotic performance of such estimators when the numbers of samples and variables grow large together. In particular, our results show that, when outliers are absent, many estimators of the regularized-Maronna type share the same asymptotic performance, and for these estimators we present a data-driven method for choosing the asymptotically optimal regularization parameter with respect to a quadratic loss. Robustness in the presence of outliers is then studied: in the non-regularized case, a large-dimensional robustness metric is proposed, and explicitly computed for two particular types of estimators, exhibiting interesting differences depending on the underlying contamination model. The impact of outliers in regularized estimators is then studied, with interesting differences with respect to the non-regularized case, leading to new practical insights on the choice of particular estimators.
We consider high-dimensional measurement errors with high-frequency data. Our focus is on recovering the covariance matrix of the random errors with optimality. In this problem, not all components of the random vector are observed at the same time an d the measurement errors are latent variables, leading to major challenges besides high data dimensionality. We propose a new covariance matrix estimator in this context with appropriate localization and thresholding. By developing a new technical device integrating the high-frequency data feature with the conventional notion of $alpha$-mixing, our analysis successfully accommodates the challenging serial dependence in the measurement errors. Our theoretical analysis establishes the minimax optimal convergence rates associated with two commonly used loss functions. We then establish cases when the proposed localized estimator with thresholding achieves the minimax optimal convergence rates. Considering that the variances and covariances can be small in reality, we conduct a second-order theoretical analysis that further disentangles the dominating bias in the estimator. A bias-corrected estimator is then proposed to ensure its practical finite sample performance. We illustrate the promising empirical performance of the proposed estimator with extensive simulation studies and a real data analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا