ترغب بنشر مسار تعليمي؟ اضغط هنا

Entity Projection via Machine Translation for Cross-Lingual NER

121   0   0.0 ( 0 )
 نشر من قبل Alankar Jain
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Although over 100 languages are supported by strong off-the-shelf machine translation systems, only a subset of them possess large annotated corpora for named entity recognition. Motivated by this fact, we leverage machine translation to improve annotation-projection approaches to cross-lingual named entity recognition. We propose a system that improves over prior entity-projection methods by: (a) leveraging machine translation systems twice: first for translating sentences and subsequently for translating entities; (b) matching entities based on orthographic and phonetic similarity; and (c) identifying matches based on distributional statistics derived from the dataset. Our approach improves upon current state-of-the-art methods for cross-lingual named entity recognition on 5 diverse languages by an average of 4.1 points. Further, our method achieves state-of-the-art F_1 scores for Armenian, outperforming even a monolingual model trained on Armenian source data.



قيم البحث

اقرأ أيضاً

286 - Ran Zhou , Ruidan He , Xin Li 2021
Data augmentation for cross-lingual NER requires fine-grained control over token labels of the augmented text. Existing augmentation approach based on masked language modeling may replace a labeled entity with words of a different class, which makes the augmented sentence incompatible with the original label sequence, and thus hurts the performance.We propose a data augmentation framework with Masked-Entity Language Modeling (MELM) which effectively ensures the replacing entities fit the original labels. Specifically, MELM linearizes NER labels into sentence context, and thus the fine-tuned MELM is able to predict masked tokens by explicitly conditioning on their labels. Our MELM is agnostic to the source of data to be augmented. Specifically, when MELM is applied to augment training data of the source language, it achieves up to 3.5% F1 score improvement for cross-lingual NER. When unlabeled target data is available and MELM can be further applied to augment pseudo-labeled target data, the performance gain reaches 5.7%. Moreover, MELM consistently outperforms multiple baseline methods for data augmentation.
190 - Zequn Sun , Wei Hu , Chengkai Li 2017
Entity alignment is the task of finding entities in two knowledge bases (KBs) that represent the same real-world object. When facing KBs in different natural languages, conventional cross-lingual entity alignment methods rely on machine translation t o eliminate the language barriers. These approaches often suffer from the uneven quality of translations between languages. While recent embedding-based techniques encode entities and relationships in KBs and do not need machine translation for cross-lingual entity alignment, a significant number of attributes remain largely unexplored. In this paper, we propose a joint attribute-preserving embedding model for cross-lingual entity alignment. It jointly embeds the structures of two KBs into a unified vector space and further refines it by leveraging attribute correlations in the KBs. Our experimental results on real-world datasets show that this approach significantly outperforms the state-of-the-art embedding approaches for cross-lingual entity alignment and could be complemented with methods based on machine translation.
Injecting external domain-specific knowledge (e.g., UMLS) into pretrained language models (LMs) advances their capability to handle specialised in-domain tasks such as biomedical entity linking (BEL). However, such abundant expert knowledge is availa ble only for a handful of languages (e.g., English). In this work, by proposing a novel cross-lingual biomedical entity linking task (XL-BEL) and establishing a new XL-BEL benchmark spanning 10 typologically diverse languages, we first investigate the ability of standard knowledge-agnostic as well as knowledge-enhanced monolingual and multilingual LMs beyond the standard monolingual English BEL task. The scores indicate large gaps to English performance. We then address the challenge of transferring domain-specific knowledge in resource-rich languages to resource-poor ones. To this end, we propose and evaluate a series of cross-lingual transfer methods for the XL-BEL task, and demonstrate that general-domain bitext helps propagate the available English knowledge to languages with little to no in-domain data. Remarkably, we show that our proposed domain-specific transfer methods yield consistent gains across all target languages, sometimes up to 20 Precision@1 points, without any in-domain knowledge in the target language, and without any in-domain parallel data.
Transferring representations from large supervised tasks to downstream tasks has shown promising results in AI fields such as Computer Vision and Natural Language Processing (NLP). In parallel, the recent progress in Machine Translation (MT) has enab led one to train multilingual Neural MT (NMT) systems that can translate between multiple languages and are also capable of performing zero-shot translation. However, little attention has been paid to leveraging representations learned by a multilingual NMT system to enable zero-shot multilinguality in other NLP tasks. In this paper, we demonstrate a simple framework, a multilingual Encoder-Classifier, for cross-lingual transfer learning by reusing the encoder from a multilingual NMT system and stitching it with a task-specific classifier component. Our proposed model achieves significant improvements in the English setup on three benchmark tasks - Amazon Reviews, SST and SNLI. Further, our system can perform classification in a new language for which no classification data was seen during training, showing that zero-shot classification is possible and remarkably competitive. In order to understand the underlying factors contributing to this finding, we conducted a series of analyses on the effect of the shared vocabulary, the training data type for NMT, classifier complexity, encoder representation power, and model generalization on zero-shot performance. Our results provide strong evidence that the representations learned from multilingual NMT systems are widely applicable across languages and tasks.
Neural methods have been shown to achieve high performance in Named Entity Recognition (NER), but rely on costly high-quality labeled data for training, which is not always available across languages. While previous works have shown that unlabeled da ta in a target language can be used to improve cross-lingual model performance, we propose a novel adversarial approach (AdvPicker) to better leverage such data and further improve results. We design an adversarial learning framework in which an encoder learns entity domain knowledge from labeled source-language data and better shared features are captured via adversarial training - where a discriminator selects less language-dependent target-language data via similarity to the source language. Experimental results on standard benchmark datasets well demonstrate that the proposed method benefits strongly from this data selection process and outperforms existing state-of-the-art methods; without requiring any additional external resources (e.g., gazetteers or via machine translation). The code is available at https://aka.ms/AdvPicker

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا