ترغب بنشر مسار تعليمي؟ اضغط هنا

Classes of graphs with low complexity: the case of classes with bounded linear rankwidth

215   0   0.0 ( 0 )
 نشر من قبل Sebastian Siebertz
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Classes with bounded rankwidth are MSO-transductions of trees and classes with bounded linear rankwidth are MSO-transductions of paths -- a result that shows a strong link between the properties of these graph classes considered from the point of view of structural graph theory and from the point of view of finite model theory. We take both views on classes with bounded linear rankwidth and prove structural and model theoretic properties of these classes. The structural results we obtain are the following. 1) The number of unlabeled graphs of order $n$ with linear rank-width at most~$r$ is at most $bigl[(r/2)!,2^{binom{r}{2}}3^{r+2}bigr]^n$. 2) Graphs with linear rankwidth at most $r$ are linearly $chi$-bounded. Actually, they have bounded $c$-chromatic number, meaning that they can be colored with $f(r)$ colors, each color inducing a cograph. 3) To the contrary, based on a Ramsey-like argument, we prove for every proper hereditary family $F$ of graphs (like cographs) that there is a class with bounded rankwidth that does not have the property that graphs in it can be colored by a bounded number of colors, each inducing a subgraph in $F$. From the model theoretical side we obtain the following results: 1) A direct short proof that graphs with linear rankwidth at most $r$ are first-order transductions of linear orders. This result could also be derived from Colcombets theorem on first-order transduction of linear orders and the equivalence of linear rankwidth with linear cliquewidth. 2) For a class $C$ with bounded linear rankwidth the following conditions are equivalent: a) $C$ is stable, b) $C$ excludes some half-graph as a semi-induced subgraph, c) $C$ is a first-order transduction of a class with bounded pathwidth. These results open the perspective to study classes admitting low linear rankwidth covers.



قيم البحث

اقرأ أيضاً

Classes with bounded rankwidth are MSO-transductions of trees and classes with bounded linear rankwidth are MSO-transductions of paths. These results show a strong link between the properties of these graph classes considered from the point of view o f structural graph theory and from the point of view of finite model theory. We take both views on classes with bounded linear rankwidth and prove structural and model theoretic properties of these classes: 1) Graphs with linear rankwidth at most $r$ are linearly mbox{$chi$-bounded}. Actually, they have bounded $c$-chromatic number, meaning that they can be colored with $f(r)$ colors, each color inducing a cograph. 2) Based on a Ramsey-like argument, we prove for every proper hereditary family $mathcal F$ of graphs (like cographs) that there is a class with bounded rankwidth that does not have the property that graphs in it can be colored by a bounded number of colors, each inducing a subgraph in~$mathcal F$. 3) For a class $mathcal C$ with bounded linear rankwidth the following conditions are equivalent: a) $mathcal C$~is~stable, b)~$mathcal C$~excludes some half-graph as a semi-induced subgraph, c) $mathcal C$ is a first-order transduction of a class with bounded pathwidth. These results open the perspective to study classes admitting low linear rankwidth covers.
Getting inspired by the famous no-three-in-line problem and by the general position subset selection problem from discrete geometry, the same is introduced into graph theory as follows. A set $S$ of vertices in a graph $G$ is a general position set i f no element of $S$ lies on a geodesic between any two other elements of $S$. The cardinality of a largest general position set is the general position number ${rm gp}(G)$ of $G.$ In cite{ullas-2016} graphs $G$ of order $n$ with ${rm gp}(G)$ $in {2, n, n-1}$ were characterized. In this paper, we characterize the classes of all connected graphs of order $ngeq 4$ with the general position number $n-2.$
It is known that testing isomorphism of chordal graphs is as hard as the general graph isomorphism problem. Every chordal graph can be represented as the intersection graph of some subtrees of a tree. The leafage of a chordal graph, is defined to be the minimum number of leaves in the representing tree. We construct a fixed-parameter tractable algorithm testing isomorphism of chordal graphs with bounded leafage. The key point is a fixed-parameter tractable algorithm finding the automorphism group of a colored order-3 hypergraph with bounded sizes of color classes of vertices.
We prove three results on the dimension structure of complexity classes. 1. The Point-to-Set Principle, which has recently been used to prove several new theorems in fractal geometry, has resource-bounded instances. These instances characterize the resource-bounded dimension of a set $X$ of languages in terms of the relativized resource-bounded dimensions of the individual elements of $X$, provided that the former resource bound is large enough to parameterize the latter. Thus for example, the dimension of a class $X$ of languages in EXP is characterized in terms of the relativized p-dimensions of the individual elements of $X$. 2. Every language that is $leq^P_m$-reducible to a p-selective set has p-dimension 0, and this fact holds relative to arbitrary oracles. Combined with a resource-bounded instance of the Point-to-Set Principle, this implies that if NP has positive dimension in EXP, then no quasipolynomial time selective language is $leq^P_m$-hard for NP. 3. If the set of all disjoint pairs of NP languages has dimension 1 in the set of all disjoint pairs of EXP languages, then NP has positive dimension in EXP.
A graph $G = (V,E)$ is a double-threshold graph if there exist a vertex-weight function $w colon V to mathbb{R}$ and two real numbers $mathtt{lb}, mathtt{ub} in mathbb{R}$ such that $uv in E$ if and only if $mathtt{lb} le mathtt{w}(u) + mathtt{w}(v) le mathtt{ub}$. In the literature, those graphs are studied as the pairwise compatibility graphs that have stars as their underlying trees. We give a new characterization of double-threshold graphs, which gives connections to bipartite permutation graphs. Using the new characterization, we present a linear-time algorithm for recognizing double-threshold graphs. Prior to our work, the fastest known algorithm by Xiao and Nagamochi [COCOON 2018] ran in $O(n^6)$ time, where $n$ is the number of vertices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا