ترغب بنشر مسار تعليمي؟ اضغط هنا

Dimension and the Structure of Complexity Classes

122   0   0.0 ( 0 )
 نشر من قبل Neil Lutz
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove three results on the dimension structure of complexity classes. 1. The Point-to-Set Principle, which has recently been used to prove several new theorems in fractal geometry, has resource-bounded instances. These instances characterize the resource-bounded dimension of a set $X$ of languages in terms of the relativized resource-bounded dimensions of the individual elements of $X$, provided that the former resource bound is large enough to parameterize the latter. Thus for example, the dimension of a class $X$ of languages in EXP is characterized in terms of the relativized p-dimensions of the individual elements of $X$. 2. Every language that is $leq^P_m$-reducible to a p-selective set has p-dimension 0, and this fact holds relative to arbitrary oracles. Combined with a resource-bounded instance of the Point-to-Set Principle, this implies that if NP has positive dimension in EXP, then no quasipolynomial time selective language is $leq^P_m$-hard for NP. 3. If the set of all disjoint pairs of NP languages has dimension 1 in the set of all disjoint pairs of EXP languages, then NP has positive dimension in EXP.



قيم البحث

اقرأ أيضاً

We present an approach to non-uniform complexity in which single-pass instruction sequences play a key part, and answer various questions that arise from this approach. We introduce several kinds of non-uniform complexity classes. One kind includes a counterpart of the well-known non-uniform complexity class P/poly and another kind includes a counterpart of the well-known non-uniform complexity class NP/poly. Moreover, we introduce a general notion of completeness for the non-uniform complexity classes of the latter kind. We also formulate a counterpart of the well-known complexity theoretic conjecture that NP is not included in P/poly. We think that the presented approach opens up an additional way of investigating issues concerning non-uniform complexity.
196 - Koji Kobayashi 2012
This paper describes about relation between circuit complexity and accept inputs structure in Hamming space by using almost all monotone circuit that emulate deterministic Turing machine (DTM). Circuit family that emulate DTM are almost all monoton e circuit family except some NOT-gate which connect input variables (like negation normal form (NNF)). Therefore, we can analyze DTM limitation by using this NNF Circuit family. NNF circuit have symmetry of OR-gate input line, so NNF circuit cannot identify from OR-gate output line which of OR-gate input line is 1. So NNF circuit family cannot compute sandwich structure effectively (Sandwich structure is two accept inputs that sandwich reject inputs in Hamming space). NNF circuit have to use unique AND-gate to identify each different vector of sandwich structure. That is, we can measure problem complexity by counting different vectors. Some decision problem have characteristic in sandwich structure. Different vectors of Negate HornSAT problem are at most constant length because we can delete constant part of each negative literal in Horn clauses by using definite clauses. Therefore, number of these different vector is at most polynomial size. The other hand, we can design high complexity problem with almost perfct nonlinear (APN) function.
We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not ha ve polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity.
We propose models for lobbying in a probabilistic environment, in which an actor (called The Lobby) seeks to influence voters preferences of voting for or against multiple issues when the voters preferences are represented in terms of probabilities. In particular, we provide two evaluation criteria and two bribery methods to formally describe these models, and we consider the resulting forms of lobbying with and without issue weighting. We provide a formal analysis for these problems of lobbying in a stochastic environment, and determine their classical and parameterized complexity depending on the given bribery/evaluation criteria and on various natural parameterizations. Specifically, we show that some of these problems can be solved in polynomial time, some are NP-complete but fixed-parameter tractable, and some are W[2]-complete. Finally, we provide approximability and inapproximability results for these problems and several variants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا