ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing isomorphism of chordal graphs of bounded leafage is fixed-parameter tractable

210   0   0.0 ( 0 )
 نشر من قبل Peter Zeman
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

It is known that testing isomorphism of chordal graphs is as hard as the general graph isomorphism problem. Every chordal graph can be represented as the intersection graph of some subtrees of a tree. The leafage of a chordal graph, is defined to be the minimum number of leaves in the representing tree. We construct a fixed-parameter tractable algorithm testing isomorphism of chordal graphs with bounded leafage. The key point is a fixed-parameter tractable algorithm finding the automorphism group of a colored order-3 hypergraph with bounded sizes of color classes of vertices.



قيم البحث

اقرأ أيضاً

We give polynomial-time approximation schemes for monotone maximization problems expressible in terms of distances (up to a fixed upper bound) and efficiently solvable in graphs of bounded treewidth. These schemes apply in all fractionally treewidth- fragile graph classes, a property that is true for many natural graph classes with sublinear separators. We also provide quasipolynomial-time approximation schemes for these problems in all classes with sublinear separators.
We consider the parameterized complexity of the problem of tracking shortest s-t paths in graphs, motivated by applications in security and wireless networks. Given an undirected and unweighted graph with a source s and a destination t, Tracking Shor test Paths asks if there exists a k-sized subset of vertices (referred to as tracking set) that intersects each shortest s-t path in a distinct set of vertices. We first generalize this problem for set systems, namely Tracking Set System, where given a family of subsets of a universe, we are required to find a subset of elements from the universe that has a unique intersection with each set in the family. Tracking Set System is shown to be fixed-parameter tractable due to its relation with a known problem, Test Cover. By a reduction to the well-studied d-hitting set problem, we give a polynomial (with respect to k) kernel for the case when the set sizes are bounded by d. This also helps solving Tracking Shortest Paths when the input graph diameter is bounded by d. While the results for Tracking Set System help to show that Tracking Shortest Paths is fixed-parameter tractable, we also give an independent algorithm by using some preprocessing rules, resulting in an improved running time.
75 - Benjamin A. Burton 2017
Many polynomial invariants of knots and links, including the Jones and HOMFLY-PT polynomials, are widely used in practice but #P-hard to compute. It was shown by Makowsky in 2001 that computing the Jones polynomial is fixed-parameter tractable in the treewidth of the link diagram, but the parameterised complexity of the more powerful HOMFLY-PT polynomial remained an open problem. Here we show that computing HOMFLY-PT is fixed-parameter tractable in the treewidth, and we give the first sub-exponential time algorithm to compute it for arbitrary links.
We consider the problem of learning an unknown ReLU network with respect to Gaussian inputs and obtain the first nontrivial results for networks of depth more than two. We give an algorithm whose running time is a fixed polynomial in the ambient dime nsion and some (exponentially large) function of only the networks parameters. Our bounds depend on the number of hidden units, depth, spectral norm of the weight matrices, and Lipschitz constant of the overall network (we show that some dependence on the Lipschitz constant is necessary). We also give a bound that is doubly exponential in the size of the network but is independent of spectral norm. These results provably cannot be obtained using gradient-based methods and give the first example of a class of efficiently learnable neural networks that gradient descent will fail to learn. In contrast, prior work for learning networks of depth three or higher requires exponential time in the ambient dimension, even when the above parameters are bounded by a constant. Additionally, all prior work for the depth-two case requires well-conditioned weights and/or positive coefficients to obtain efficient run-times. Our algorithm does not require these assumptions. Our main technical tool is a type of filtered PCA that can be used to iteratively recover an approximate basis for the subspace spanned by the hidden units in the first layer. Our analysis leverages new structural results on lattice polynomials from tropical geometry.
We study the algorithmic properties of the graph class Chordal-ke, that is, graphs that can be turned into a chordal graph by adding at most k edges or, equivalently, the class of graphs of fill-in at most k. We discover that a number of fundamental intractable optimization problems being parameterized by k admit subexponential algorithms on graphs from Chordal-ke. We identify a large class of optimization problems on Chordal-ke that admit algorithms with the typical running time 2^{O(sqrt{k}log k)}cdot n^{O(1)}. Examples of the problems from this class are finding an independent set of maximum weight, finding a feedback vertex set or an odd cycle transversal of minimum weight, or the problem of finding a maximum induced planar subgraph. On the other hand, we show that for some fundamental optimization problems, like finding an optimal graph coloring or finding a maximum clique, are FPT on Chordal-ke when parameterized by k but do not admit subexponential in k algorithms unless ETH fails. Besides subexponential time algorithms, the class of Chordal-ke graphs appears to be appealing from the perspective of kernelization (with parameter k). While it is possible to show that most of the weighted variants of optimization problems do not admit polynomial in k kernels on Chordal-ke graphs, this does not exclude the existence of Turing kernelization and kernelization for unweighted graphs. In particular, we construct a polynomial Turing kernel for Weighted Clique on Chordal-ke graphs. For (unweighted) Independent Set we design polynomial kernels on two interesting subclasses of Chordal-ke, namely, Interval-ke and Split-ke graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا