ﻻ يوجد ملخص باللغة العربية
This paper introduces R2D3, an agent that makes efficient use of demonstrations to solve hard exploration problems in partially observable environments with highly variable initial conditions. We also introduce a suite of eight tasks that combine these three properties, and show that R2D3 can solve several of the tasks where other state of the art methods (both with and without demonstrations) fail to see even a single successful trajectory after tens of billions of steps of exploration.
A grand challenge in reinforcement learning is intelligent exploration, especially when rewards are sparse or deceptive. Two Atari games serve as benchmarks for such hard-exploration domains: Montezumas Revenge and Pitfall. On both games, current RL
We propose ScheduleNet, a RL-based real-time scheduler, that can solve various types of multi-agent scheduling problems. We formulate these problems as a semi-MDP with episodic reward (makespan) and learn ScheduleNet, a decentralized decision-making
We introduce Adaptive Procedural Task Generation (APT-Gen), an approach to progressively generate a sequence of tasks as curricula to facilitate reinforcement learning in hard-exploration problems. At the heart of our approach, a task generator learn
Suppose an agent is in a (possibly unknown) Markov Decision Process in the absence of a reward signal, what might we hope that an agent can efficiently learn to do? This work studies a broad class of objectives that are defined solely as functions of
We describe a purely image-based method for finding geometric constructions with a ruler and compass in the Euclidea geometric game. The method is based on adapting the Mask R-CNN state-of-the-art image processing neural architecture and adding a tre