ترغب بنشر مسار تعليمي؟ اضغط هنا

Its All in the Name: Mitigating Gender Bias with Name-Based Counterfactual Data Substitution

107   0   0.0 ( 0 )
 نشر من قبل Rowan Hall Maudslay
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper treats gender bias latent in word embeddings. Previous mitigation attempts rely on the operationalisation of gender bias as a projection over a linear subspace. An alternative approach is Counterfactual Data Augmentation (CDA), in which a corpus is duplicated and augmented to remove bias, e.g. by swapping all inherently-gendered words in the copy. We perform an empirical comparison of these approaches on the English Gigaword and Wikipedia, and find that whilst both successfully reduce direct bias and perform well in tasks which quantify embedding quality, CDA variants outperform projection-based methods at the task of drawing non-biased gender analogies by an average of 19% across both corpora. We propose two improvements to CDA: Counterfactual Data Substitution (CDS), a variant of CDA in which potentially biased text is randomly substituted to avoid duplication, and the Names Intervention, a novel name-pairing technique that vastly increases the number of words being treated. CDA/S with the Names Intervention is the only approach which is able to mitigate indirect gender bias: following debiasing, previously biased words are significantly less clustered according to gender (cluster purity is reduced by 49%), thus improving on the state-of-the-art for bias mitigation.

قيم البحث

اقرأ أيضاً

Name tagging in low-resource languages or domains suffers from inadequate training data. Existing work heavily relies on additional information, while leaving those noisy annotations unexplored that extensively exist on the web. In this paper, we pro pose a novel neural model for name tagging solely based on weakly labeled (WL) data, so that it can be applied in any low-resource settings. To take the best advantage of all WL sentences, we split them into high-quality and noisy portions for two modules, respectively: (1) a classification module focusing on the large portion of noisy data can efficiently and robustly pretrain the tag classifier by capturing textual context semantics; and (2) a costly sequence labeling module focusing on high-quality data utilizes Partial-CRFs with non-entity sampling to achieve global optimum. Two modules are combined via shared parameters. Extensive experiments involving five low-resource languages and fine-grained food domain demonstrate our superior performance (6% and 7.8% F1 gains on average) as well as efficiency.
Dialogue systems play an increasingly important role in various aspects of our daily life. It is evident from recent research that dialogue systems trained on human conversation data are biased. In particular, they can produce responses that reflect peoples gender prejudice. Many debiasing methods have been developed for various NLP tasks, such as word embedding. However, they are not directly applicable to dialogue systems because they are likely to force dialogue models to generate similar responses for different genders. This greatly degrades the diversity of the generated responses and immensely hurts the performance of the dialogue models. In this paper, we propose a novel adversarial learning framework Debiased-Chat to train dialogue models free from gender bias while keeping their performance. Extensive experiments on two real-world conversation datasets show that our framework significantly reduces gender bias in dialogue models while maintaining the response quality. The implementation of the proposed framework is released.
Racial disparity in academia is a widely acknowledged problem. The quantitative understanding of racial-based systemic inequalities is an important step towards a more equitable research system. However, few large-scale analyses have been performed o n this topic, mostly because of the lack of robust race-disambiguation algorithms. Identifying author information does not generally include the authors race. Therefore, an algorithm needs to be employed, using known information about authors, i.e., their names, to infer their perceived race. Nevertheless, as any other algorithm, the process of racial inference can generate biases if it is not carefully considered. When the research is focused on the understanding of racial-based inequalities, such biases undermine the objectives of the investigation and may perpetuate inequities. The goal of this article is to assess the biases introduced by the different approaches used name-based racial inference. We use information from US census and mortgage applications to infer the race of US author names in the Web of Science. We estimate the effects of using given and family names, thresholds or continuous distributions, and imputation. Our results demonstrate that the validity of name-based inference varies by race and ethnicity and that threshold approaches underestimate Black authors and overestimate White authors. We conclude with recommendations to avoid potential biases. This article fills an important research gap that will allow more systematic and unbiased studies on racial disparity in science.
Recent research demonstrates that word embeddings, trained on the human-generated corpus, have strong gender biases in embedding spaces, and these biases can result in the discriminative results from the various downstream tasks. Whereas the previous methods project word embeddings into a linear subspace for debiasing, we introduce a textit{Latent Disentanglement} method with a siamese auto-encoder structure with an adapted gradient reversal layer. Our structure enables the separation of the semantic latent information and gender latent information of given word into the disjoint latent dimensions. Afterwards, we introduce a textit{Counterfactual Generation} to convert the gender information of words, so the original and the modified embeddings can produce a gender-neutralized word embedding after geometric alignment regularization, without loss of semantic information. From the various quantitative and qualitative debiasing experiments, our method shows to be better than existing debiasing methods in debiasing word embeddings. In addition, Our method shows the ability to preserve semantic information during debiasing by minimizing the semantic information losses for extrinsic NLP downstream tasks.
Many name tagging approaches use local contextual information with much success, but fail when the local context is ambiguous or limited. We present a new framework to improve name tagging by utilizing local, document-level, and corpus-level contextu al information. We retrieve document-level context from other sentences within the same document and corpus-level context from sentences in other topically related documents. We propose a model that learns to incorporate document-level and corpus-level contextual information alongside local contextual information via global attentions, which dynamically weight their respective contextual information, and gating mechanisms, which determine the influence of this information. Extensive experiments on benchmark datasets show the effectiveness of our approach, which achieves state-of-the-art results for Dutch, German, and Spanish on the CoNLL-2002 and CoNLL-2003 datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا