ترغب بنشر مسار تعليمي؟ اضغط هنا

Avoiding bias when inferring race using name-based approaches

107   0   0.0 ( 0 )
 نشر من قبل Diego Kozlowski
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Racial disparity in academia is a widely acknowledged problem. The quantitative understanding of racial-based systemic inequalities is an important step towards a more equitable research system. However, few large-scale analyses have been performed on this topic, mostly because of the lack of robust race-disambiguation algorithms. Identifying author information does not generally include the authors race. Therefore, an algorithm needs to be employed, using known information about authors, i.e., their names, to infer their perceived race. Nevertheless, as any other algorithm, the process of racial inference can generate biases if it is not carefully considered. When the research is focused on the understanding of racial-based inequalities, such biases undermine the objectives of the investigation and may perpetuate inequities. The goal of this article is to assess the biases introduced by the different approaches used name-based racial inference. We use information from US census and mortgage applications to infer the race of US author names in the Web of Science. We estimate the effects of using given and family names, thresholds or continuous distributions, and imputation. Our results demonstrate that the validity of name-based inference varies by race and ethnicity and that threshold approaches underestimate Black authors and overestimate White authors. We conclude with recommendations to avoid potential biases. This article fills an important research gap that will allow more systematic and unbiased studies on racial disparity in science.



قيم البحث

اقرأ أيضاً

This paper treats gender bias latent in word embeddings. Previous mitigation attempts rely on the operationalisation of gender bias as a projection over a linear subspace. An alternative approach is Counterfactual Data Augmentation (CDA), in which a corpus is duplicated and augmented to remove bias, e.g. by swapping all inherently-gendered words in the copy. We perform an empirical comparison of these approaches on the English Gigaword and Wikipedia, and find that whilst both successfully reduce direct bias and perform well in tasks which quantify embedding quality, CDA variants outperform projection-based methods at the task of drawing non-biased gender analogies by an average of 19% across both corpora. We propose two improvements to CDA: Counterfactual Data Substitution (CDS), a variant of CDA in which potentially biased text is randomly substituted to avoid duplication, and the Names Intervention, a novel name-pairing technique that vastly increases the number of words being treated. CDA/S with the Names Intervention is the only approach which is able to mitigate indirect gender bias: following debiasing, previously biased words are significantly less clustered according to gender (cluster purity is reduced by 49%), thus improving on the state-of-the-art for bias mitigation.
294 - M. Abel , D.L. Shepelyansky 2010
Development of efficient business process models and determination of their characteristic properties are subject of intense interdisciplinary research. Here, we consider a business process model as a directed graph. Its nodes correspond to the units identified by the modeler and the link direction indicates the causal dependencies between units. It is of primary interest to obtain the stationary flow on such a directed graph, which corresponds to the steady-state of a firm during the business process. Following the ideas developed recently for the World Wide Web, we construct the Google matrix for our business process model and analyze its spectral properties. The importance of nodes is characterized by Page-Rank and recently proposed CheiRank and 2DRank, respectively. The results show that this two-dimensional ranking gives a significant information about the influence and communication properties of business model units. We argue that the Google matrix method, described here, provides a new efficient tool helping companies to make their decisions on how to evolve in the exceedingly dynamic global market.
The subject of collective attention is central to an information age where millions of people are inundated with daily messages. It is thus of interest to understand how attention to novel items propagates and eventually fades among large populations . We have analyzed the dynamics of collective attention among one million users of an interactive website -- texttt{digg.com} -- devoted to thousands of novel news stories. The observations can be described by a dynamical model characterized by a single novelty factor. Our measurements indicate that novelty within groups decays with a stretched-exponential law, suggesting the existence of a natural time scale over which attention fades.
We present a method for accurately predicting the long time popularity of online content from early measurements of user access. Using two content sharing portals, Youtube and Digg, we show that by modeling the accrual of views and votes on content o ffered by these services we can predict the long-term dynamics of individual submissions from initial data. In the case of Digg, measuring access to given stories during the first two hours allows us to forecast their popularity 30 days ahead with remarkable accuracy, while downloads of Youtube videos need to be followed for 10 days to attain the same performance. The differing time scales of the predictions are shown to be due to differences in how content is consumed on the two portals: Digg stories quickly become outdated, while Youtube videos are still found long after they are initially submitted to the portal. We show that predictions are more accurate for submissions for which attention decays quickly, whereas predictions for evergreen content will be prone to larger errors.
We use sequential large-scale crawl data to empirically investigate and validate the dynamics that underlie the evolution of the structure of the web. We find that the overall structure of the web is defined by an intricate interplay between experien ce or entitlement of the pages (as measured by the number of inbound hyperlinks a page already has), inherent talent or fitness of the pages (as measured by the likelihood that someone visiting the page would give a hyperlink to it), and the continual high rates of birth and death of pages on the web. We find that the web is conservative in judging talent and the overall fitness distribution is exponential, showing low variability. The small variance in talent, however, is enough to lead to experience distributions with high variance: The preferential attachment mechanism amplifies these small biases and leads to heavy-tailed power-law (PL) inbound degree distributions over all pages, as well as over pages that are of the same age. The balancing act between experience and talent on the web allows newly introduced pages with novel and interesting content to grow quickly and surpass older pages. In this regard, it is much like what we observe in high-mobility and meritocratic societies: People with entitlement continue to have access to the best resources, but there is just enough screening for fitness that allows for talented winners to emerge and join the ranks of the leaders. Finally, we show that the fitness estimates have potential practical applications in ranking query results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا