ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Resource Name Tagging Learned with Weakly Labeled Data

101   0   0.0 ( 0 )
 نشر من قبل Yixin Cao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Name tagging in low-resource languages or domains suffers from inadequate training data. Existing work heavily relies on additional information, while leaving those noisy annotations unexplored that extensively exist on the web. In this paper, we propose a novel neural model for name tagging solely based on weakly labeled (WL) data, so that it can be applied in any low-resource settings. To take the best advantage of all WL sentences, we split them into high-quality and noisy portions for two modules, respectively: (1) a classification module focusing on the large portion of noisy data can efficiently and robustly pretrain the tag classifier by capturing textual context semantics; and (2) a costly sequence labeling module focusing on high-quality data utilizes Partial-CRFs with non-entity sampling to achieve global optimum. Two modules are combined via shared parameters. Extensive experiments involving five low-resource languages and fine-grained food domain demonstrate our superior performance (6% and 7.8% F1 gains on average) as well as efficiency.



قيم البحث

اقرأ أيضاً

Data augmentation techniques have been widely used to improve machine learning performance as they enhance the generalization capability of models. In this work, to generate high quality synthetic data for low-resource tagging tasks, we propose a nov el augmentation method with language models trained on the linearized labeled sentences. Our method is applicable to both supervised and semi-supervised settings. For the supervised settings, we conduct extensive experiments on named entity recognition (NER), part of speech (POS) tagging and end-to-end target based sentiment analysis (E2E-TBSA) tasks. For the semi-supervised settings, we evaluate our method on the NER task under the conditions of given unlabeled data only and unlabeled data plus a knowledge base. The results show that our method can consistently outperform the baselines, particularly when the given gold training data are less.
Weak supervision has shown promising results in many natural language processing tasks, such as Named Entity Recognition (NER). Existing work mainly focuses on learning deep NER models only with weak supervision, i.e., without any human annotation, a nd shows that by merely using weakly labeled data, one can achieve good performance, though still underperforms fully supervised NER with manually/strongly labeled data. In this paper, we consider a more practical scenario, where we have both a small amount of strongly labeled data and a large amount of weakly labeled data. Unfortunately, we observe that weakly labeled data does not necessarily improve, or even deteriorate the model performance (due to the extensive noise in the weak labels) when we train deep NER models over a simple or weighted combination of the strongly labeled and weakly labeled data. To address this issue, we propose a new multi-stage computational framework -- NEEDLE with three essential ingredients: (1) weak label completion, (2) noise-aware loss function, and (3) final fine-tuning over the strongly labeled data. Through experiments on E-commerce query NER and Biomedical NER, we demonstrate that NEEDLE can effectively suppress the noise of the weak labels and outperforms existing methods. In particular, we achieve new SOTA F1-scores on 3 Biomedical NER datasets: BC5CDR-chem 93.74, BC5CDR-disease 90.69, NCBI-disease 92.28.
Many name tagging approaches use local contextual information with much success, but fail when the local context is ambiguous or limited. We present a new framework to improve name tagging by utilizing local, document-level, and corpus-level contextu al information. We retrieve document-level context from other sentences within the same document and corpus-level context from sentences in other topically related documents. We propose a model that learns to incorporate document-level and corpus-level contextual information alongside local contextual information via global attentions, which dynamically weight their respective contextual information, and gating mechanisms, which determine the influence of this information. Extensive experiments on benchmark datasets show the effectiveness of our approach, which achieves state-of-the-art results for Dutch, German, and Spanish on the CoNLL-2002 and CoNLL-2003 datasets.
Biomedical text tagging systems are plagued by the dearth of labeled training data. There have been recent attempts at using pre-trained encoders to deal with this issue. Pre-trained encoder provides representation of the input text which is then fed to task-specific layers for classification. The entire network is fine-tuned on the labeled data from the target task. Unfortunately, a low-resource biomedical task often has too few labeled instances for satisfactory fine-tuning. Also, if the label space is large, it contains few or no labeled instances for majority of the labels. Most biomedical tagging systems treat labels as indexes, ignoring the fact that these labels are often concepts expressed in natural language e.g. `Appearance of lesion on brain imaging. To address these issues, we propose constructing extra labeled instances using label-text (i.e. labels name) as input for the corresponding label-index (i.e. labels index). In fact, we propose a number of strategies for manufacturing multiple artificial labeled instances from a single label. The network is then fine-tuned on a combination of real and these newly constructed artificial labeled instances. We evaluate the proposed approach on an important low-resource biomedical task called textit{PICO annotation}, which requires tagging raw text describing clinical trials with labels corresponding to different aspects of the trial i.e. PICO (Population, Intervention/Control, Outcome) characteristics of the trial. Our empirical results show that the proposed method achieves a new state-of-the-art performance for PICO annotation with very significant improvements over competitive baselines.
We compare different models for low resource multi-task sequence tagging that leverage dependencies between label sequences for different tasks. Our analysis is aimed at datasets where each example has labels for multiple tasks. Current approaches us e either a separate model for each task or standard multi-task learning to learn shared feature representations. However, these approaches ignore correlations between label sequences, which can provide important information in settings with small training datasets. To analyze which scenarios can profit from modeling dependencies between labels in different tasks, we revisit dynamic conditional random fields (CRFs) and combine them with deep neural networks. We compare single-task, multi-task and dynamic CRF setups for three diverse datasets at both sentence and document levels in English and German low resource scenarios. We show that including silver labels from pretrained part-of-speech taggers as auxiliary tasks can improve performance on downstream tasks. We find that especially in low-resource scenarios, the explicit modeling of inter-dependencies between task predictions outperforms single-task as well as standard multi-task models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا