ﻻ يوجد ملخص باللغة العربية
This paper provides a review of the general experimental methodology of snow-powered flow visualization and super-large-scale particle imaging velocimetry (SLPIV), the corresponding field deployments and major scientific findings from our work on a 2.5 MW utility-scale wind turbine at the Eolos field station. The field measurements were conducted to investigate the incoming flow in the induction zone and the near-wake flows from different perspectives. It has been shown that these snow-powered measurements can provide sufficient spatiotemporal resolution and fields of view to characterize both qualitatively and quantitatively the incoming flow, all the major coherent structures generated by the turbine (e.g., blade, nacelle and tower vortices, etc.) as well as the development and interaction of these structures in the near wake. Our work has further revealed several interesting behaviors of near-wake flows (e.g., wake contraction, dynamic wake modulation, and meandering and deflection of nacelle wake, etc.), and their connections with constantly-changing inflows and turbine operation, which are uniquely associated with utility-scale turbines. These findings have demonstrated that the near wake flows, though highly complex, can be predicted with substantial statistical confidence using SCADA and structural response information readily available from the current utility-scale turbines. Such knowledge can be potentially incorporated into wake development models and turbine controllers for wind farm optimization in the future.
Super-large-scale particle image velocimetry (SLPIV) using natural snowfall is used to investigate the influence of nacelle and tower generated flow structures on the near-wake of a 2.5 MW wind turbine at the EOLOS field station. The analysis is base
Understanding wind turbine wake mixing and recovery is critical for improving the power generation and structural stability of downwind turbines in a wind farm. In the field, where incoming flow and turbine operation are constantly changing, wake rec
The atmospheric incoming flow of a wind turbine is intimately connected to its power production as well as its structural stability. Here we present an incoming flow measurement of a utility-scale turbine at the high spatio-temporal resolution, using
Super-large-scale particle image velocimetry and flow visualization with natural snowfall is used to collect and analyze multiple datasets in the near wake of a 2.5 MW wind turbine. Each dataset captures the full vertical span of the wake from a diff
The current study uses large eddy simulations to investigate the transient response of a utility-scale wind turbine wake to dynamic changes in atmospheric and operational conditions, as observed in previous field-scale measurements. Most wind turbine