ﻻ يوجد ملخص باللغة العربية
The atmospheric incoming flow of a wind turbine is intimately connected to its power production as well as its structural stability. Here we present an incoming flow measurement of a utility-scale turbine at the high spatio-temporal resolution, using super-large-scale particle image velocimetry (SLPIV) with natural snowflakes. The datasets include over a one-hour duration of incoming flow with a field of view of 85 m (vertical) x 40 m (streamwise) centered at 0.2 rotor diameter upstream of the turbine. The mean flow shows the presence of the induction zone and a distinct region with enhanced vertical velocity. Time series of nacelle sonic anemometer and SLPIV measured streamwise velocity outside the induction zone show generally matched trends with time-varying discrepancies potentially due to the induction effect and the flow acceleration around the nacelle. These discrepancies between the two signals, characterized by the sonic-SLPIV velocity ratio, is normally distributed and is less than unity 85% of the time. The velocity ratio first decreases with increasing wind speed up to around the rated speed of the turbine, then plateaus, and finally rises with a further increase in wind speed. With conditional sampling, the distribution of the velocity ratio shows that larger yaw error leads to an increase in both the mean and the spread of the distribution. Moreover, as the incident angle of the incoming flow changes from negative to positive (i.e. from pointing downward to upward), the velocity ratio first decreases as the angle approaches zero. With further increase of the incidence angle, the ratio then plateaus and fluctuations are augmented. Finally, our results show that the intensity of short-term velocity fluctuation has a limited impact on the sonic-SLPIV velocity ratio.
Super-large-scale particle image velocimetry and flow visualization with natural snowfall is used to collect and analyze multiple datasets in the near wake of a 2.5 MW wind turbine. Each dataset captures the full vertical span of the wake from a diff
This paper provides a review of the general experimental methodology of snow-powered flow visualization and super-large-scale particle imaging velocimetry (SLPIV), the corresponding field deployments and major scientific findings from our work on a 2
Super-large-scale particle image velocimetry (SLPIV) using natural snowfall is used to investigate the influence of nacelle and tower generated flow structures on the near-wake of a 2.5 MW wind turbine at the EOLOS field station. The analysis is base
The current study uses large eddy simulations to investigate the transient response of a utility-scale wind turbine wake to dynamic changes in atmospheric and operational conditions, as observed in previous field-scale measurements. Most wind turbine
Understanding wind turbine wake mixing and recovery is critical for improving the power generation and structural stability of downwind turbines in a wind farm. In the field, where incoming flow and turbine operation are constantly changing, wake rec