ﻻ يوجد ملخص باللغة العربية
Understanding wind turbine wake mixing and recovery is critical for improving the power generation and structural stability of downwind turbines in a wind farm. In the field, where incoming flow and turbine operation are constantly changing, wake recovery can be significantly influenced by dynamic wake modulation, which has not yet been explored. Here we present the first investigation of dynamic wake modulation in the near wake of a utility-scale turbine and quantify its relationship with changing conditions. This investigation is enabled using novel super-large-scale flow visualization with natural snowfall, providing unprecedented spatiotemporal resolution to resolve instantaneous changes of the wake envelope. These measurements reveal the significant influence of dynamic wake modulation on wake recovery. Further, our study uncovers the direct connection of dynamic wake modulation with operational parameters readily available to the turbine, paving the way for more precise wake prediction and control under field conditions for wind farm optimization.
The current study uses large eddy simulations to investigate the transient response of a utility-scale wind turbine wake to dynamic changes in atmospheric and operational conditions, as observed in previous field-scale measurements. Most wind turbine
Super-large-scale particle image velocimetry and flow visualization with natural snowfall is used to collect and analyze multiple datasets in the near wake of a 2.5 MW wind turbine. Each dataset captures the full vertical span of the wake from a diff
Super-large-scale particle image velocimetry (SLPIV) using natural snowfall is used to investigate the influence of nacelle and tower generated flow structures on the near-wake of a 2.5 MW wind turbine at the EOLOS field station. The analysis is base
This paper provides a review of the general experimental methodology of snow-powered flow visualization and super-large-scale particle imaging velocimetry (SLPIV), the corresponding field deployments and major scientific findings from our work on a 2
The atmospheric incoming flow of a wind turbine is intimately connected to its power production as well as its structural stability. Here we present an incoming flow measurement of a utility-scale turbine at the high spatio-temporal resolution, using