ﻻ يوجد ملخص باللغة العربية
Based on results of Harding, Heunen, Lindenhovius and Navara, (2019), we give a connection between the category of AW*-algebras and their normal Jordan homomorphisms and a category COG of orthogemetries, which are structures that are somewhat similar to projective geometries, consisting of a set of points and a set of lines, where each line contains exactly 3 points. They are constructed from the commutative AW*-subalgebras of an AW*-algebra that have at most an 8-element Boolean algebra of projections. Morphisms between orthogemetries are partial functions between their sets of points as in projective geometry. The functor from the category of AW*-algebras with normal Jordan homomorphism to COG we create is injective on non-trivial objects, and full and faithful with respect to morphisms that do not involve type $I_2$ factors.
Motivated by the theory of Cuntz-Krieger algebras we define and study $ C^ast $-algebras associated to directed quantum graphs. For classical graphs the $ C^ast $-algebras obtained this way can be viewed as free analogues of Cuntz-Krieger algebras, a
To a proper inclusion Nsubset M of II_1 factors of finite Jones index [M:N], we associate an ergodic C*-action of the quantum group S_mu U(2). The deformation parameter is determined by -1<mu<0 and [M:N]=|mu+mu^{-1}|. The higher relative commutants c
The spectral functor of an ergodic action of a compact quantum group G on a unital C*-algebra is quasitensor, in the sense that the tensor product of two spectral subspaces is isometrically contained in the spectral subspace of the tensor product rep
We give some sufficient conditions for the injectivity of actions of compact quantum groups on $C^{ast}$-algebra. As an application, we prove that any faithful smooth action by a compact quantum group on a compact smooth (not necessarily connected) m
We investigate a method of construction of central deformations of associative algebras, which we call centrification. We prove some general results in the case of Hopf algebras and provide several examples.