ترغب بنشر مسار تعليمي؟ اضغط هنا

Orthogeometries and AW*-algebras

216   0   0.0 ( 0 )
 نشر من قبل Bert Lindenhovius
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on results of Harding, Heunen, Lindenhovius and Navara, (2019), we give a connection between the category of AW*-algebras and their normal Jordan homomorphisms and a category COG of orthogemetries, which are structures that are somewhat similar to projective geometries, consisting of a set of points and a set of lines, where each line contains exactly 3 points. They are constructed from the commutative AW*-subalgebras of an AW*-algebra that have at most an 8-element Boolean algebra of projections. Morphisms between orthogemetries are partial functions between their sets of points as in projective geometry. The functor from the category of AW*-algebras with normal Jordan homomorphism to COG we create is injective on non-trivial objects, and full and faithful with respect to morphisms that do not involve type $I_2$ factors.



قيم البحث

اقرأ أيضاً

Motivated by the theory of Cuntz-Krieger algebras we define and study $ C^ast $-algebras associated to directed quantum graphs. For classical graphs the $ C^ast $-algebras obtained this way can be viewed as free analogues of Cuntz-Krieger algebras, a nd need not be nuclear. We study two particular classes of quantum graphs in detail, namely the trivial and the complete quantum graphs. For the trivial quantum graph on a single matrix block, we show that the associated quantum Cuntz-Krieger algebra is neither unital, nuclear nor simple, and does not depend on the size of the matrix block up to $ KK $-equivalence. In the case of the complete quantum graphs we use quantum symmetries to show that, in certain cases, the corresponding quantum Cuntz-Krieger algebras are isomorphic to Cuntz algebras. These isomorphisms, which seem far from obvious from the definitions, imply in particular that these $ C^ast $-algebras are all pairwise non-isomorphic for complete quantum graphs of different dimensions, even on the level of $ KK $-theory. We explain how the notion of unitary error basis from quantum information theory can help to elucidate the situation. We also discuss quantum symmetries of quantum Cuntz-Krieger algebras in general.
To a proper inclusion Nsubset M of II_1 factors of finite Jones index [M:N], we associate an ergodic C*-action of the quantum group S_mu U(2). The deformation parameter is determined by -1<mu<0 and [M:N]=|mu+mu^{-1}|. The higher relative commutants c an be identified with the spectral spaces of the tensor powers of the defining representation of the quantum group. This ergodic action may be thought of as a virtual subgroup of S_mu U(2) in the sense of Mackey arising from the tensor category generated by M regarded as a bimodule over N. mu is negative as M is a real bimodule.
The spectral functor of an ergodic action of a compact quantum group G on a unital C*-algebra is quasitensor, in the sense that the tensor product of two spectral subspaces is isometrically contained in the spectral subspace of the tensor product rep resentation, and the inclusion maps satisfy natural properties. We show that any quasitensor *-functor from Rep(G) to the category of Hilbert spaces is the spectral functor of an ergodic action of G on a unital C*-algebra. As an application, we associate an ergodic G-action on a unital C*-algebra to an inclusion of Rep(G) into an abstract tensor C*-category. If the inclusion arises from a quantum subgroup of G, the associated G-system is just the quantum quotient space. If G is a group and the category has permutation symmetry, the associated system is commutative, and therefore isomorphic to the classical quotient space by a closed subgroup of $G$. If a tensor C*-category has a Hecke symmetry making an object of dimension d and q-quantum determinant one then there is an ergodic action of S_qU(d) on a unital C*-algebra, having the spaces of intertwiners from the tensor unit to powers of the object as its spectral subspaces. The special case od S_qU(2) is discussed.
122 - D Goswami , S Joardar 2018
We give some sufficient conditions for the injectivity of actions of compact quantum groups on $C^{ast}$-algebra. As an application, we prove that any faithful smooth action by a compact quantum group on a compact smooth (not necessarily connected) m anifold is injective. A similar result is proved for actions on $C^{ast}$- algebras obtained by Rieffel-deformation of compact, smooth manifolds.
We investigate a method of construction of central deformations of associative algebras, which we call centrification. We prove some general results in the case of Hopf algebras and provide several examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا