ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on the injectivity of action by compact quantum groups on a class of $C^{ast}$-algebras

123   0   0.0 ( 0 )
 نشر من قبل Debashish Goswami
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give some sufficient conditions for the injectivity of actions of compact quantum groups on $C^{ast}$-algebra. As an application, we prove that any faithful smooth action by a compact quantum group on a compact smooth (not necessarily connected) manifold is injective. A similar result is proved for actions on $C^{ast}$- algebras obtained by Rieffel-deformation of compact, smooth manifolds.

قيم البحث

اقرأ أيضاً

The spectral functor of an ergodic action of a compact quantum group G on a unital C*-algebra is quasitensor, in the sense that the tensor product of two spectral subspaces is isometrically contained in the spectral subspace of the tensor product rep resentation, and the inclusion maps satisfy natural properties. We show that any quasitensor *-functor from Rep(G) to the category of Hilbert spaces is the spectral functor of an ergodic action of G on a unital C*-algebra. As an application, we associate an ergodic G-action on a unital C*-algebra to an inclusion of Rep(G) into an abstract tensor C*-category. If the inclusion arises from a quantum subgroup of G, the associated G-system is just the quantum quotient space. If G is a group and the category has permutation symmetry, the associated system is commutative, and therefore isomorphic to the classical quotient space by a closed subgroup of $G$. If a tensor C*-category has a Hecke symmetry making an object of dimension d and q-quantum determinant one then there is an ergodic action of S_qU(d) on a unital C*-algebra, having the spaces of intertwiners from the tensor unit to powers of the object as its spectral subspaces. The special case od S_qU(2) is discussed.
Suppose that a compact quantum group $clq$ acts faithfully on a smooth, compact, connected manifold $M$, i.e. has a $C^*$ (co)-action $alpha$ on $C(M)$, such that the action $alpha$ is isometric in the sense of cite{Goswami} for some Riemannian struc ture on $M$. We prove that $clq$ must be commutative as a $C^{ast}$ algebra i.e. $clqcong C(G)$ for some compact group $G$ acting smoothly on $M$. In particular, the quantum isometry group of $M$ (in the sense of cite{Goswami}) coincides with $C(ISO(M))$.
A general form of contractive idempotent functionals on coamenable locally compact quantum groups is obtained, generalising the result of Greenleaf on contractive measures on locally compact groups. The image of a convolution operator associated to a contractive idempotent is shown to be a ternary ring of operators. As a consequence a one-to-one correspondence between contractive idempotents and a certain class of ternary rings of operators is established.
118 - Pekka Salmi , Adam Skalski 2016
Correspondence between idempotent states and expected right-invariant subalgebras is extended to non-coamenable, non-unimodular locally compact quantum groups; in particular left convolution operators are shown to automatically preserve the right Haar weight.
Let G be a classical compact Lie group and G_mu the associated compact matrix quantum group deformed by a positive parameter mu (or a nonzero and real mu in the type A case). It is well known that the category Rep(G_mu) of unitary f.d. representation s of G_mu is a braided tensor C*-category. We show that any braided tensor *-functor from Rep(G_mu) to another braided tensor C*-category with irreducible tensor unit is full if |mu| eq 1. In particular, the functor of restriction to the representation category of a proper compact quantum subgroup, cannot be made into a braided functor. Our result also shows that the Temperley--Lieb category generated by an object of dimension >2 can not be embedded properly into a larger category with the same objects as a braided tensor C*-subcategory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا