ترغب بنشر مسار تعليمي؟ اضغط هنا

Ergodic actions of S_mu U(2) on C*-algebras from II_1 subfactors

280   0   0.0 ( 0 )
 نشر من قبل Claudia Pinzari
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

To a proper inclusion Nsubset M of II_1 factors of finite Jones index [M:N], we associate an ergodic C*-action of the quantum group S_mu U(2). The deformation parameter is determined by -1<mu<0 and [M:N]=|mu+mu^{-1}|. The higher relative commutants can be identified with the spectral spaces of the tensor powers of the defining representation of the quantum group. This ergodic action may be thought of as a virtual subgroup of S_mu U(2) in the sense of Mackey arising from the tensor category generated by M regarded as a bimodule over N. mu is negative as M is a real bimodule.



قيم البحث

اقرأ أيضاً

The spectral functor of an ergodic action of a compact quantum group G on a unital C*-algebra is quasitensor, in the sense that the tensor product of two spectral subspaces is isometrically contained in the spectral subspace of the tensor product rep resentation, and the inclusion maps satisfy natural properties. We show that any quasitensor *-functor from Rep(G) to the category of Hilbert spaces is the spectral functor of an ergodic action of G on a unital C*-algebra. As an application, we associate an ergodic G-action on a unital C*-algebra to an inclusion of Rep(G) into an abstract tensor C*-category. If the inclusion arises from a quantum subgroup of G, the associated G-system is just the quantum quotient space. If G is a group and the category has permutation symmetry, the associated system is commutative, and therefore isomorphic to the classical quotient space by a closed subgroup of $G$. If a tensor C*-category has a Hecke symmetry making an object of dimension d and q-quantum determinant one then there is an ergodic action of S_qU(d) on a unital C*-algebra, having the spaces of intertwiners from the tensor unit to powers of the object as its spectral subspaces. The special case od S_qU(2) is discussed.
We use a tensor C*-category with conjugates and two quasitensor functors into the category of Hilbert spaces to define a *-algebra depending functorially on this data. If one of them is tensorial, we can complete in the maximal C*-norm. A particular case of this construction allows us to begin with solutions of the conjugate equations and associate ergodic actions of quantum groups on the C*-algebra in question. The quantum groups involved are A_u(Q) and B_u(Q).
73 - Chris Bruce 2019
Let $K$ be a number field with ring of integers $R$. Given a modulus $mathfrak{m}$ for $K$ and a group $Gamma$ of residues modulo $mathfrak{m}$, we consider the semi-direct product $Rrtimes R_{mathfrak{m},Gamma}$ obtained by restricting the multiplic ative part of the full $ax+b$-semigroup over $R$ to those algebraic integers whose residue modulo $mathfrak{m}$ lies in $Gamma$, and we study the left regular C*-algebra of this semigroup. We give two presentations of this C*-algebra and realize it as a full corner in a crossed product C*-algebra. We also establish a faithfulness criterion for representations in terms of projections associated with ideal classes in a quotient of the ray class group modulo $mathfrak{m}$, and we explicitly describe the primitive ideals using relations only involving the range projections of the generating isometries; this leads to an explicit description of the boundary quotient. Our results generalize and strengthen those of Cuntz, Deninger, and Laca and of Echterhoff and Laca for the C*-algebra of the full $ax+b$-semigroup. We conclude by showing that our construction is functorial in the appropriate sense; in particular, we prove that the left regular C*-algebra of $Rrtimes R_{mathfrak{m},Gamma}$ embeds canonically into the left regular C*-algebra of the full $ax+b$-semigroup. Our methods rely heavily on Lis theory of semigroup C*-algebras.
180 - Marta Asaeda 2007
We show that any graph, in the sequence given by Haagerup in 1991 as that of candidates of principal graphs of subfactors, is not realized as a principal graph except for the smallest two. This settles the remaining case of a previous work of the first author.
100 - Hans Wenzl 2011
We construct analogs of the embedding of orthogonal and symplectic groups into unitary groups in the context of fusion categories. At least some of the resulting module categories also appear in boundary conformal field theory. We determine when thes e categories are unitarizable, and explicitly calculate the index and principal graph of the resulting subfactors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا