ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal surface neutralization of Fr ions with metal foils for magneto-optical trapping of radioisotopes

82   0   0.0 ( 0 )
 نشر من قبل Hirokazu Kawamura
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate neutralization processes (especially thermal surface neutralization), which are required for the magneto-optical trapping of radioactive atoms. A variety of neutralization methods are first summarized: neutral beam injection for fusion reactors, neutral atom implantation in semiconductor processing, and the production of radioactive neutral atoms in accelerators. We focus on thermal surface neutralization, which produces neutral atoms in the thermal energy range for laser cooling. The experiments were carried out with yttrium, gadolinium, and zirconium foils to neutralize francium and rubidium ions for magneto-optical trapping. The results reconfirm that yttrium foil is a good neutralizer (i.e., it has a neutral release efficiency $>65%$). In addition, the release fraction when using yttrium foil exceeds 75% at 1350 K, which is greater than the release fraction for the other foils. This reconfirmation is important because few previous studies have focused on thermal surface neutralization. Moreover, the results show that the neutralization efficiency is strongly influenced by the experimental process itself.



قيم البحث

اقرأ أيضاً

136 - M. Tandecki , J. Zhang , S. Aubin 2014
We demonstrate a new technique to prepare an offline source of francium for trapping in a magneto-optical trap. Implanting a radioactive beam of $^{225}$Ac, $t_{1/2} = 9.920(3)$ days, in a foil, allows use of the decay products, i.e.$^{221}$Fr, $t_{1 /2} = 288.0(4)$ s. $^{221}$Fr is ejected from the foil by the $alpha$ decay of $^{225}$Ac. This technique is compatible with the online accumulation of a laser-cooled atomic francium sample for a series of planned parity non-conservation measurements at TRIUMF. We obtain a 34% release efficiency for $^{221}$Fr from the recoil source based on particle detector measurements. We find that laser cooling operation with the source is $8^{+10}_{-5}$ times less efficient than from a mass-separated ion beam of $^{221}$Fr in the current geometry. While the flux of this source is two to three orders of magnitude lower than typical francium beams from ISOL facilities, the source provides a longer-term supply of francium for offline studies.
93 - T. Hilden , E. Brucken , J. Heino 2017
An analysis software was developed for the high aspect ratio optical scanning system in the Detec- tor Laboratory of the University of Helsinki and the Helsinki Institute of Physics. The system is used e.g. in the quality assurance of the GEM-TPC det ectors being developed for the beam diagnostics system of the SuperFRS at future FAIR facility. The software was tested by analyzing five CERN standard GEM foils scanned with the optical scanning system. The measurement uncertainty of the diameter of the GEM holes and the pitch of the hole pattern was found to be 0.5 {mu}m and 0.3 {mu}m, respectively. The software design and the performance are discussed. The correlation between the GEM hole size distribution and the corresponding gain variation was studied by comparing them against a detailed gain mapping of a foil and a set of six lower precision control measurements. It can be seen that a qualitative estimation of the behavior of the local variation in gain across the GEM foil can be made based on the measured sizes of the outer and inner holes.
We report the laser-cooling and confinement of Cd atoms in a magneto-optical trap, and characterize the loading process from the background Cd vapor. The trapping laser drives the 1S0-1P1 transition at 229 nm in this two-electron atom and also photoi onizes atoms directly from the 1P1 state. This photoionization overwhelms the other loss mechanisms and allows a direct measurement of the photoionization cross section, which we measure to be 2(1)x10^(-16)cm^(2) from the 1P1 state. When combined with nearby laser-cooled and trapped Cd^(+) ions, this apparatus could facilitate studies in ultracold interactions between atoms and ions.
221 - F. Simon , B. Azmoun , U. Becker 2007
The planned tracking upgrade of the STAR experiment at RHIC includes a large-area GEM tracker used to determine the charge sign of electrons and positrons produced from W+(-) decays. For such a large-scale project commercial availability of GEM foils is necessary. We report first results obtained with a triple GEM detector using GEM foils produced by Tech-Etch Inc. of Plymouth, MA, USA. Measurements of gain uniformity, long-term stability as well as measurements of the energy resolution for X-Rays are compared to results obtained with an identical detector using GEM foils produced at CERN. A quality assurance procedure based on optical tests using an automated high-resolution scanner has been established, allowing a study of the correlation of the observed behavior of the detector and the geometrical properties of the GEM foils. Detectors based on Tech-Etch and CERN produced foils both show good uniformity of the gain over the active area and stable gain after an initial charge-up period, making them well suited for precision tracking applications.
Laser cooling and trapping are central to modern atomic physics. The workhorse technique in cold-atom physics is the magneto-optical trap (MOT), which combines laser cooling with a restoring force from radiation pressure. For a variety of atomic spec ies, MOTs can capture and cool large numbers of particles to ultracold temperatures (<1 mK); this has enabled the study of a wide range of phenomena from optical clocks to ultracold collisions whilst also serving as the ubiquitous starting point for further cooling into the regime of quantum degeneracy. Magneto-optical trapping of molecules could provide a similarly powerful starting point for the study and manipulation of ultracold molecular gases. Here, we demonstrate three-dimensional magneto-optical trapping of a diatomic molecule, strontium monofluoride (SrF), at a temperature of approximately 2.5 mK. This method is expected to be viable for a significant number of diatomic species. Such chemical diversity is desired for the wide array of existing and proposed experiments which employ molecules for applications ranging from precision measurement, to quantum simulation and quantum information, to ultracold chemistry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا