ﻻ يوجد ملخص باللغة العربية
The planned tracking upgrade of the STAR experiment at RHIC includes a large-area GEM tracker used to determine the charge sign of electrons and positrons produced from W+(-) decays. For such a large-scale project commercial availability of GEM foils is necessary. We report first results obtained with a triple GEM detector using GEM foils produced by Tech-Etch Inc. of Plymouth, MA, USA. Measurements of gain uniformity, long-term stability as well as measurements of the energy resolution for X-Rays are compared to results obtained with an identical detector using GEM foils produced at CERN. A quality assurance procedure based on optical tests using an automated high-resolution scanner has been established, allowing a study of the correlation of the observed behavior of the detector and the geometrical properties of the GEM foils. Detectors based on Tech-Etch and CERN produced foils both show good uniformity of the gain over the active area and stable gain after an initial charge-up period, making them well suited for precision tracking applications.
Three Gas-Electron-Multiplier tracking detectors with an active area of 10 cm x 10 cm and a two-dimensional, laser-etched orthogonal strip readout have been tested extensively in particle beams at the Meson Test Beam Facility at Fermilab. These detec
Many experiments are currently using or proposing to use large area GEM foils in their detectors, which is creating a need for commercially available GEM foils. Currently CERN is the only main distributor of large GEM foils, however with the growing
With future experiments proposing detectors that utilize very large-area GEM foils, there is a need for commercially available GEM foils. Double-mask etching techniques pose a clear limitation in the maximum size of GEM foils. In contrast, single-mas
The recently completed Forward GEM Tracker (FGT) of the STAR experiment at RHIC took advantage of commercially produced GEM foils based on double-mask chemical etching techniques. With future experiments proposing detectors that utilize very large-ar
Fiber Bragg Grating (FBG) sensors have been so far mainly used in high energy physics (HEP) as high precision positioning and re-positioning sensors and as low cost, easy to mount, radiation hard and low space- consuming temperature and humidity devi