ترغب بنشر مسار تعليمي؟ اضغط هنا

Offline trapping of $^{221}$Fr in a magneto-optical trap from implantation of an $^{225}$Ac ion beam

136   0   0.0 ( 0 )
 نشر من قبل Michael Tandecki
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a new technique to prepare an offline source of francium for trapping in a magneto-optical trap. Implanting a radioactive beam of $^{225}$Ac, $t_{1/2} = 9.920(3)$ days, in a foil, allows use of the decay products, i.e.$^{221}$Fr, $t_{1/2} = 288.0(4)$ s. $^{221}$Fr is ejected from the foil by the $alpha$ decay of $^{225}$Ac. This technique is compatible with the online accumulation of a laser-cooled atomic francium sample for a series of planned parity non-conservation measurements at TRIUMF. We obtain a 34% release efficiency for $^{221}$Fr from the recoil source based on particle detector measurements. We find that laser cooling operation with the source is $8^{+10}_{-5}$ times less efficient than from a mass-separated ion beam of $^{221}$Fr in the current geometry. While the flux of this source is two to three orders of magnitude lower than typical francium beams from ISOL facilities, the source provides a longer-term supply of francium for offline studies.



قيم البحث

اقرأ أيضاً

An open-ring ion trap, also referred to as transparent trap was initially built up to perform $beta$-$ u$ correlation experiments with radioactive ions. This trap geometry is also well suited to perform experiments with laser-cooled ions, serving for the development of a new type of Penning trap, in the framework of the project TRAPSENSOR at the University of Granada. The goal of this project is to use a single $^{40}$Ca$^+$ ion as detector for single-ion mass spectrometry. Within this project and without any modification to the initial electrode configuration, it was possible to perform Doppler cooling on $^{40}$Ca$^+$ ions, starting from large clouds and reaching single ion sensitivity. This new feature of the trap might be important also for other experiments with ions produced at Radioactive Ion Beam (RIB) facilities. In this publication, the trap and the laser system will be described, together with their performance with respect to laser cooling applied to large ion clouds down to a single ion.
81 - H. Kawamura , T. Aoki , K. Harada 2019
We investigate neutralization processes (especially thermal surface neutralization), which are required for the magneto-optical trapping of radioactive atoms. A variety of neutralization methods are first summarized: neutral beam injection for fusion reactors, neutral atom implantation in semiconductor processing, and the production of radioactive neutral atoms in accelerators. We focus on thermal surface neutralization, which produces neutral atoms in the thermal energy range for laser cooling. The experiments were carried out with yttrium, gadolinium, and zirconium foils to neutralize francium and rubidium ions for magneto-optical trapping. The results reconfirm that yttrium foil is a good neutralizer (i.e., it has a neutral release efficiency $>65%$). In addition, the release fraction when using yttrium foil exceeds 75% at 1350 K, which is greater than the release fraction for the other foils. This reconfirmation is important because few previous studies have focused on thermal surface neutralization. Moreover, the results show that the neutralization efficiency is strongly influenced by the experimental process itself.
The UCN$tau$ experiment is designed to measure the lifetime $tau_{n}$ of the free neutron by trapping ultracold neutrons (UCN) in a magneto-gravitational trap. An asymmetric bowl-shaped NdFeB magnet Halbach array confines low-field-seeking UCN within the apparatus, and a set of electromagnetic coils in a toroidal geometry provide a background holding field to eliminate depolarization-induced UCN loss caused by magnetic field nodes. We present a measurement of the storage time $tau_{store}$ of the trap by storing UCN for various times, and counting the survivors. The data are consistent with a single exponential decay, and we find $tau_{store}=860pm19$ s: within $1 sigma$ of current global averages for $tau_{n}$. The storage time with the holding field deactiveated is found to be $tau_{store}=470 pm 160$ s; this decreased storage time is due to the loss of UCN which undergo Majorana spin-flips while being stored. We discuss plans to increase the statistical sensitivity of the measurement and investigate potential systematic effects.
168 - M. Benali 2020
In the frame of the project MORA (Matters Origin from the Radio Activity of trapped and oriented ions), a transparent axially symmetric radio-frequency ion trap (MORATrap) was designed in order to measure the triple correlation parameter $D$ in nucle ar $beta-$decay of laser-polarised ions. The trap design was inspired from the LPCTrap geometry, operated at GANIL from 2005 to 2013. In a real (non-ideal) Paul trap, the quadrupole electric potential is not perfect leading to instabilities in ion motion and therefore affecting the overall trapping efficiency. This paper presents a numerical method aiming to optimise the geometry of a trap. It is applied to MORATrap in order to improve the trapping efficiency and to enlarge the axial transparent solid angle compared to LPCTrap. In the whole optimisation process, numerical computation of electric potential and field was carried out using an electrostatic solver based on boundary element method (BEM). The optimisation consisted in minimising an objective function (fitness function) depending on higher order multipoles of the potential. Finally, systematic changes of trap dimensions and electrode displacements were applied to investigate geometrical effects on the potential quality.
This article presents the readout electronics of a novel beam monitoring system for ion research facility accelerator. The readout electronics are divided into Front-end Card (FEC) and Readout Control Unit (RCU). FEC uses Topmetal II minus to process es the energy of the hitting particles and convert it into a voltage signal. The main function of RCU is to digitize the analog output signal of FEC and format the raw data. On the other hand, the RCU also processes the control commands from the host and distributes the commands according to the mapping. The readout electronic has been characterized and calibrated in the laboratory, and have been installed with the detector. Implementation and testing of readout electronics have been discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا