ترغب بنشر مسار تعليمي؟ اضغط هنا

LoRAS: An oversampling approach for imbalanced datasets

60   0   0.0 ( 0 )
 نشر من قبل Saptarshi Bej
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The Synthetic Minority Oversampling TEchnique (SMOTE) is widely-used for the analysis of imbalanced datasets. It is known that SMOTE frequently over-generalizes the minority class, leading to misclassifications for the majority class, and effecting the overall balance of the model. In this article, we present an approach that overcomes this limitation of SMOTE, employing Localized Random Affine Shadowsampling (LoRAS) to oversample from an approximated data manifold of the minority class. We benchmarked our algorithm with 14 publicly available imbalanced datasets using three different Machine Learning (ML) algorithms and compared the performance of LoRAS, SMOTE and several SMOTE extensions that share the concept of using convex combinations of minority class data points for oversampling with LoRAS. We observed that LoRAS, on average generates better ML models in terms of F1-Score and Balanced accuracy. Another key observation is that while most of the extensions of SMOTE we have tested, improve the F1-Score with respect to SMOTE on an average, they compromise on the Balanced accuracy of a classification model. LoRAS on the contrary, improves both F1 Score and the Balanced accuracy thus produces better classification models. Moreover, to explain the success of the algorithm, we have constructed a mathematical framework to prove that LoRAS oversampling technique provides a better estimate for the mean of the underlying local data distribution of the minority class data space.



قيم البحث

اقرأ أيضاً

Over 85 oversampling algorithms, mostly extensions of the SMOTE algorithm, have been built over the past two decades, to solve the problem of imbalanced datasets. However, it has been evident from previous studies that different oversampling algorith ms have different degrees of efficiency with different classifiers. With numerous algorithms available, it is difficult to decide on an oversampling algorithm for a chosen classifier. Here, we overcome this problem with a multi-schematic and classifier-independent oversampling approach: ProWRAS(Proximity Weighted Random Affine Shadowsampling). ProWRAS integrates the Localized Random Affine Shadowsampling (LoRAS)algorithm and the Proximity Weighted Synthetic oversampling (ProWSyn) algorithm. By controlling the variance of the synthetic samples, as well as a proximity-weighted clustering system of the minority classdata, the ProWRAS algorithm improves performance, compared to algorithms that generate synthetic samples through modelling high dimensional convex spaces of the minority class. ProWRAS has four oversampling schemes, each of which has its unique way to model the variance of the generated data. Most importantly, the performance of ProWRAS with proper choice of oversampling schemes, is independent of the classifier used. We have benchmarked our newly developed ProWRAS algorithm against five sate-of-the-art oversampling models and four different classifiers on 20 publicly available datasets. ProWRAS outperforms other oversampling algorithms in a statistically significant way, in terms of both F1-score and Kappa-score. Moreover, we have introduced a novel measure for classifier independence I-score, and showed quantitatively that ProWRAS performs better, independent of the classifier used. In practice, ProWRAS customizes synthetic sample generation according to a classifier of choice and thereby reduces benchmarking efforts.
83 - Wenfang Lin , Zhenyu Wu , Yang Ji 2018
Data-driven fault diagnostics and prognostics suffers from class-imbalance problem in industrial systems and it raises challenges to common machine learning algorithms as it becomes difficult to learn the features of the minority class samples. Synth etic oversampling methods are commonly used to tackle these problems by generating the minority class samples to balance the distributions between majority and minority classes. However, many of oversampling methods are inappropriate that they cannot generate effective and useful minority class samples according to different distributions of data, which further complicate the process of learning samples. Thus, this paper proposes a novel adaptive oversampling technique: EM-based Weighted Minority Oversampling TEchnique (EWMOTE) for industrial fault diagnostics and prognostics. The methods comprises a weighted minority sampling strategy to identify hard-to-learn informative minority fault samples and Expectation Maximization (EM) based imputation algorithm to generate fault samples. To validate the performance of the proposed methods, experiments are conducted in two real datasets. The results show that the method could achieve better performance on not only binary class, but multi-class imbalance learning task in different imbalance ratios than other oversampling-based baseline models.
Many important data analysis applications present with severely imbalanced datasets with respect to the target variable. A typical example is medical image analysis, where positive samples are scarce, while performance is commonly estimated against t he correct detection of these positive examples. We approach this challenge by formulating the problem as anomaly detection with generative models. We train a generative model without supervision on the `negative (common) datapoints and use this model to estimate the likelihood of unseen data. A successful model allows us to detect the `positive case as low likelihood datapoints. In this position paper, we present the use of state-of-the-art deep generative models (GAN and VAE) for the estimation of a likelihood of the data. Our results show that on the one hand both GANs and VAEs are able to separate the `positive and `negative samples in the MNIST case. On the other hand, for the NLST case, neither GANs nor VAEs were able to capture the complexity of the data and discriminate anomalies at the level that this task requires. These results show that even though there are a number of successes presented in the literature for using generative models in similar applications, there remain further challenges for broad successful implementation.
Class imbalanced datasets are common in real-world applications that range from credit card fraud detection to rare disease diagnostics. Several popular classification algorithms assume that classes are approximately balanced, and hence build the acc ompanying objective function to maximize an overall accuracy rate. In these situations, optimizing the overall accuracy will lead to highly skewed predictions towards the majority class. Moreover, the negative business impact resulting from false positives (positive samples incorrectly classified as negative) can be detrimental. Many methods have been proposed to address the class imbalance problem, including methods such as over-sampling, under-sampling and cost-sensitive methods. In this paper, we consider the over-sampling method, where the aim is to augment the original dataset with synthetically created observations of the minority classes. In particular, inspired by the recent advances in generative modelling techniques (e.g., Variational Inference and Generative Adversarial Networks), we introduce a new oversampling technique based on variational autoencoders. Our experiments show that the new method is superior in augmenting datasets for downstream classification tasks when compared to traditional oversampling methods.
In this paper, we propose a data collaboration analysis method for distributed datasets. The proposed method is a centralized machine learning while training datasets and models remain distributed over some institutions. Recently, data became large a nd distributed with decreasing costs of data collection. If we can centralize these distributed datasets and analyse them as one dataset, we expect to obtain novel insight and achieve a higher prediction performance compared with individual analyses on each distributed dataset. However, it is generally difficult to centralize the original datasets due to their huge data size or regarding a privacy-preserving problem. To avoid these difficulties, we propose a data collaboration analysis method for distributed datasets without sharing the original datasets. The proposed method centralizes only intermediate representation constructed individually instead of the original dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا