ترغب بنشر مسار تعليمي؟ اضغط هنا

Data collaboration analysis for distributed datasets

108   0   0.0 ( 0 )
 نشر من قبل Akira Imakura
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a data collaboration analysis method for distributed datasets. The proposed method is a centralized machine learning while training datasets and models remain distributed over some institutions. Recently, data became large and distributed with decreasing costs of data collection. If we can centralize these distributed datasets and analyse them as one dataset, we expect to obtain novel insight and achieve a higher prediction performance compared with individual analyses on each distributed dataset. However, it is generally difficult to centralize the original datasets due to their huge data size or regarding a privacy-preserving problem. To avoid these difficulties, we propose a data collaboration analysis method for distributed datasets without sharing the original datasets. The proposed method centralizes only intermediate representation constructed individually instead of the original dataset.



قيم البحث

اقرأ أيضاً

A recent technical breakthrough in the domain of machine learning is the discovery and the multiple applications of Generative Adversarial Networks (GANs). Those generative models are computationally demanding, as a GAN is composed of two deep neural networks, and because it trains on large datasets. A GAN is generally trained on a single server. In this paper, we address the problem of distributing GANs so that they are able to train over datasets that are spread on multiple workers. MD-GAN is exposed as the first solution for this problem: we propose a novel learning procedure for GANs so that they fit this distributed setup. We then compare the performance of MD-GAN to an adapted version of Federated Learning to GANs, using the MNIST and CIFAR10 datasets. MD-GAN exhibits a reduction by a factor of two of the learning complexity on each worker node, while providing better performances than federated learning on both datasets. We finally discuss the practical implications of distributing GANs.
The offline reinforcement learning (RL) setting (also known as full batch RL), where a policy is learned from a static dataset, is compelling as progress enables RL methods to take advantage of large, previously-collected datasets, much like how the rise of large datasets has fueled results in supervised learning. However, existing online RL benchmarks are not tailored towards the offline setting and existing offline RL benchmarks are restricted to data generated by partially-trained agents, making progress in offline RL difficult to measure. In this work, we introduce benchmarks specifically designed for the offline setting, guided by key properties of datasets relevant to real-world applications of offline RL. With a focus on dataset collection, examples of such properties include: datasets generated via hand-designed controllers and human demonstrators, multitask datasets where an agent performs different tasks in the same environment, and datasets collected with mixtures of policies. By moving beyond simple benchmark tasks and data collected by partially-trained RL agents, we reveal important and unappreciated deficiencies of existing algorithms. To facilitate research, we have released our benchmark tasks and datasets with a comprehensive evaluation of existing algorithms, an evaluation protocol, and open-source examples. This serves as a common starting point for the community to identify shortcomings in existing offline RL methods and a collaborative route for progress in this emerging area.
This paper proposes an interpretable non-model sharing collaborative data analysis method as one of the federated learning systems, which is an emerging technology to analyze distributed data. Analyzing distributed data is essential in many applicati ons such as medical, financial, and manufacturing data analyses due to privacy, and confidentiality concerns. In addition, interpretability of the obtained model has an important role for practical applications of the federated learning systems. By centralizing intermediate representations, which are individually constructed in each party, the proposed method obtains an interpretable model, achieving a collaborative analysis without revealing the individual data and learning model distributed over local parties. Numerical experiments indicate that the proposed method achieves better recognition performance for artificial and real-world problems than individual analysis.
Highly distributed training of Deep Neural Networks (DNNs) on future compute platforms (offering 100 of TeraOps/s of computational capacity) is expected to be severely communication constrained. To overcome this limitation, new gradient compression t echniques are needed that are computationally friendly, applicable to a wide variety of layers seen in Deep Neural Networks and adaptable to variations in network architectures as well as their hyper-parameters. In this paper we introduce a novel technique - the Adaptive Residual Gradient Compression (AdaComp) scheme. AdaComp is based on localized selection of gradient residues and automatically tunes the compression rate depending on local activity. We show excellent results on a wide spectrum of state of the art Deep Learning models in multiple domains (vision, speech, language), datasets (MNIST, CIFAR10, ImageNet, BN50, Shakespeare), optimizers (SGD with momentum, Adam) and network parameters (number of learners, minibatch-size etc.). Exploiting both sparsity and quantization, we demonstrate end-to-end compression rates of ~200X for fully-connected and recurrent layers, and ~40X for convolutional layers, without any noticeable degradation in model accuracies.
Recently, there has been an increasing interest in designing distributed convex optimization algorithms under the setting where the data matrix is partitioned on features. Algorithms under this setting sometimes have many advantages over those under the setting where data is partitioned on samples, especially when the number of features is huge. Therefore, it is important to understand the inherent limitations of these optimization problems. In this paper, with certain restrictions on the communication allowed in the procedures, we develop tight lower bounds on communication rounds for a broad class of non-incremental algorithms under this setting. We also provide a lower bound on communication rounds for a class of (randomized) incremental algorithms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا