ترغب بنشر مسار تعليمي؟ اضغط هنا

Conductivity noise across temperature driven transitions of rare-earth nickelate heterostructures

143   0   0.0 ( 0 )
 نشر من قبل Srimanta Middey
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The metal-insulator transition (MIT) of bulk rare-earth nickelates is accompanied by a simultaneous charge ordering (CO) transition. We have investigated low-frequency resistance fluctuations (noise) across the MIT and magnetic transition of [EuNiO$_3$/LaNiO$_3$] superlattices, where selective suppression of charge ordering has been achieved by mismatching the superlattice periodicity with the periodicity of charge ordering. We have observed that irrespective of the presence/absence of long-range CO, the noise magnitude is enhanced by several orders with strong non-1/$f$ ($f$ = frequency) component when the system undergoes MIT and magnetic transition. The higher order statistics of resistance fluctuations reveal the presence of strong non-Gaussian components in both cases, further indicating inhomogeneous electrical transport arising from the electronic phase separation. Specifically, we find almost three orders of magnitude smaller noise in the insulating phase of the sample without long-range CO compared to the sample with CO. These findings suggest that digital synthesis can be a potential route to implement electronic transitions of complex oxides for device application.



قيم البحث

اقرأ أيضاً

Heterostructure engineering provides an efficient way to obtain several unconventional phases of LaNiO3, which is otherwise paramagnetic, metallic in bulk form. In this work, a new class of short periodic superlattices, consisting of LaNiO3 and EuNiO 3 have been grown by pulsed laser interval deposition to investigate the effect of structural symmetry mismatch on the electronic and magnetic behaviors. Synchrotron based soft and hard X-ray resonant scattering experiments have found that these heterostructures undergo simultaneous electronic and magnetic transitions. Most importantly, LaNiO3 within these artificial structures exhibits a new antiferromagnetic, charge ordered insulating phase. This work demonstrates that emergent properties can be obtained by engineering structural symmetry mismatch across a heterointerface.
The rare earth nickelates RNiO3 are metallic at high temperatures and insulating and magnetically ordered at low temperatures. The low temperature phase has been predicted to be type II multiferroic, i.e. ferroelectric and magnetic order are coupled and occur simultaneously. Confirmation of those ideas has been inhibited by the absence of experimental data on single crystals. Here we report on Raman spectroscopic data of RNiO3 single crystals (R = Y, Er, Ho, Dy, Sm, Nd) for temperatures between 10 K and 1000 K. Entering the magnetically ordered phase we observe the appearance of a large number of additional vibrational modes, implying a breaking of inversion symmetry expected for multiferroic order.
Resonant inelastic x-ray scattering is used to investigate the electronic origin of orbital polarization in nickelate heterostructures taking $mathrm{LaTiO_3-LaNiO_3-3x(LaAlO_3)}$, a system with exceptionally large polarization, as a model system. We find that heterostructuring generates only minor changes in the Ni $3d$ orbital energy levels, contradicting the often-invoked picture in which changes in orbital energy levels generate orbital polarization. Instead, O $K$-edge x-ray absorption spectroscopy demonstrates that orbital polarization is caused by an anisotropic reconstruction of the oxygen ligand hole states. This provides an explanation for the limited success of theoretical predictions based on tuning orbital energy levels and implies that future theories should focus on anisotropic hybridization as the most effective means to drive large changes in electronic structure and realize novel emergent phenomena.
We have used resonant x-ray diffraction to develop a detailed description of antiferromagnetic ordering in epitaxial superlattices based on two-unit-cell thick layers of the strongly correlated metal LaNiO3. We also report reference experiments on th in films of PrNiO3 and NdNiO3. The resulting data indicate a spiral state whose polarization plane can be controlled by adjusting the Ni d-orbital occupation via two independent mechanisms: epitaxial strain and quantum confinement of the valence electrons. The data are discussed in the light of recent theoretical predictions.
For most metals, increasing temperature (T) or disorder will quicken electron scattering. This hypothesis informs the Drude model of electronic conductivity. However, for so-called bad metals this predicts scattering times so short as to conflict wit h Heisenbergs uncertainty principle. Here we introduce the rare-earth nickelates (RNiO_3, R = rare earth) as a class of bad metals. We study SmNiO_3 thin films using infrared spectroscopy while varying T and disorder. We show that the interaction between lattice distortions and Ni-O bond covalence explains both the bad metal conduction and the insulator-metal transition in the nickelates by shifting spectral weight over the large energy scale established by the Ni-O orbital interaction, thus enabling very low sigma while preserving the Drude model and without violating the uncertainty principle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا