ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital engineering in nickelate heterostructures driven by anisotropic oxygen hybridization rather than orbital energy levels

92   0   0.0 ( 0 )
 نشر من قبل Gilberto Fabbris
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Resonant inelastic x-ray scattering is used to investigate the electronic origin of orbital polarization in nickelate heterostructures taking $mathrm{LaTiO_3-LaNiO_3-3x(LaAlO_3)}$, a system with exceptionally large polarization, as a model system. We find that heterostructuring generates only minor changes in the Ni $3d$ orbital energy levels, contradicting the often-invoked picture in which changes in orbital energy levels generate orbital polarization. Instead, O $K$-edge x-ray absorption spectroscopy demonstrates that orbital polarization is caused by an anisotropic reconstruction of the oxygen ligand hole states. This provides an explanation for the limited success of theoretical predictions based on tuning orbital energy levels and implies that future theories should focus on anisotropic hybridization as the most effective means to drive large changes in electronic structure and realize novel emergent phenomena.

قيم البحث

اقرأ أيضاً

We have used resonant x-ray diffraction to develop a detailed description of antiferromagnetic ordering in epitaxial superlattices based on two-unit-cell thick layers of the strongly correlated metal LaNiO3. We also report reference experiments on th in films of PrNiO3 and NdNiO3. The resulting data indicate a spiral state whose polarization plane can be controlled by adjusting the Ni d-orbital occupation via two independent mechanisms: epitaxial strain and quantum confinement of the valence electrons. The data are discussed in the light of recent theoretical predictions.
Novel interplay of spin-orbit coupling and electron correlations in complex Ir oxides recently emerged as a new paradigm for correlated electron physics. Because of a large spin-orbit coupling of ~0.5 eV, which is comparable to the transfer energy t and the crystal field splitting $Delta$ and Coulomb U, a variety of ground states including magnetic insulator, band insulator, semimetal and metal, shows up in a narrow materials phase space. Utilizing such subtle competition of the ground states, we successfully tailor a spin-orbital magnetic insulator out of a semimetal SrIrO$_3$ by controlling dimensionality using superlattice of [(SrIrO$_3$)$_m$, SrTiO$_3$] and show that a magnetic ordering triggers the transition to magnetic insulator. Those results can be described well by a first-principles calculation. This study is an important step towards the design and the realization of topological phases in complex Ir oxides with very strong spin-orbit coupling.
Thickness driven electronic phase transitions are broadly observed in different types of functional perovskite heterostructures. However, uncertainty remains whether these effects are solely due to spatial confinement, broken symmetry or rather to a change of structure with varying film thickness. Here, we present direct evidence for the relaxation of oxygen 2p and Mn 3d orbital (p-d) hybridization coupled to the layer dependent octahedral tilts within a La2/3Sr1/3MnO3 film driven by interfacial octahedral coupling. An enhanced Curie temperature is achieved by reducing the octahedral tilting via interface structure engineering. Atomically resolved lattice, electronic and magnetic structures together with X-ray absorption spectroscopy demonstrate the central role of thickness dependent p-d hybridization in the widely observed dimensionality effects present in correlated oxide heterostructures.
A combined analysis of x-ray absorption and resonant reflectivity data was used to obtain the orbital polarization profiles of superlattices composed of four-unit-cell-thick layers of metallic LaNiO3 and layers of insulating RXO3 (R=La, Gd, Dy and X= Al, Ga, Sc), grown on substrates that impose either compressive or tensile strain. This superlattice geometry allowed us to partly separate the influence of epitaxial strain from interfacial effects controlled by the chemical composition of the insulating blocking layers. Our quantitative analysis reveal orbital polarizations up to 25%. We further show that strain is the most effective control parameter, whereas the influence of the chemical composition of the blocking layers is comparatively small.
High temperature cuprate superconductivity remains a defining problem in condensed matter physics. Among myriad approaches to addressing this problem has been the study of alternative transition metal oxides with similar structures and 3d electron co unt that are suggested as proxies for cuprate physics. None of these analogs has been superconducting, and few are even metallic. Here, we report that the low-valent, quasi-two-dimensional trilayer compound, Pr4Ni3O8 avoids a charge-stripe ordered phase previously reported for La4Ni3O8, leading to a metallic ground state. By combining x-ray absorption spectroscopy and density functional theory calculations, we further find that metallic Pr4Ni3O8 exhibits a low-spin configuration and significant orbital polarization of the unoccupied eg states with pronounced dx2-y2 character near the Fermi energy, both hallmarks of the cuprate superconductors. Belonging to a regime of 3d electron count found for hole-doped cuprates, Pr4Ni3O8 thus represents one of the closest analogies to cuprates yet reported and a singularly promising candidate for high-Tc superconductivity if appropriately doped.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا