ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergent phase in short-periodic rare-earth nickelate superlattices

130   0   0.0 ( 0 )
 نشر من قبل Srimanta Middey
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Heterostructure engineering provides an efficient way to obtain several unconventional phases of LaNiO3, which is otherwise paramagnetic, metallic in bulk form. In this work, a new class of short periodic superlattices, consisting of LaNiO3 and EuNiO3 have been grown by pulsed laser interval deposition to investigate the effect of structural symmetry mismatch on the electronic and magnetic behaviors. Synchrotron based soft and hard X-ray resonant scattering experiments have found that these heterostructures undergo simultaneous electronic and magnetic transitions. Most importantly, LaNiO3 within these artificial structures exhibits a new antiferromagnetic, charge ordered insulating phase. This work demonstrates that emergent properties can be obtained by engineering structural symmetry mismatch across a heterointerface.

قيم البحث

اقرأ أيضاً

The nature of the magnetic order in (La2/3Sr1/3MnO3)9/(LaNiO3)3 superlattices is investigated using x-ray resonant magnetic reflectometry. We observe a new c-axis magnetic helix state in the (LaNiO3)3 layers that had never been reported in nickelates , and which mediates the ~130deg magnetic coupling between the ferromagnetic (La2/3Sr1/3MnO3)9 layers, illustrating the power of x-rays for discovering the magnetic state of complex oxide interfaces. Resonant inelastic x-ray scattering and x-ray absorption spectroscopy show that Ni-O ligand hole states from bulk LaNiO3 are mostly filled due to interfacial electron transfer from Mn, driving the Ni orbitals closer to an atomic-like 3d8 configuration. We discuss the constraints imposed by this electronic configuration to the microscopic origin of the observed magnetic structure. The presence of a magnetic helix in (La2/3Sr1/3MnO3)9/(LaNiO3)3 is crucial for modeling the potential spintronic functionality of this system and may be important for designing emergent magnetism in novel devices in general.
Transition metal based oxide heterostructures exhibit diverse emergent phenomena e.g. two dimensional electron gas, superconductivity, non-collinear magnetic phase, ferroelectricity, polar vortices, topological Hall effect etc., which are absent in t he constituent bulk oxides. The microscopic understandings of these properties in such nanometer thick materials are extremely challenging. Synchrotron x-ray based techniques such as x-ray diffraction, x-ray absorption spectroscopy (XAS), resonant x-ray scattering (RXS), resonant inelastic x-ray scattering (RIXS), x-ray photoemission spectroscopy, etc. are essential to elucidating the response of lattice, charge, orbital, and spin degrees of freedoms to the heterostructuring. As a prototypical case of complex behavior, rare-earth nickelates (RENiO3 with RE=La, Pr, Nd, Sm, Eu, Lu) based thin films and heterostructures have been investigated quite extensively in recent years. An extensive body of literature about these systems exists and for an overview of the field, we refer the interested readers to the recent reviews Annual Review of Materials Research 46, 305 (2016) and Reports on Progress in Physics 81, 046501 (2018). In the present article, we give a brief review that concentrates on the use of synchrotron based techniques to investigate a specific set of EuNiO3/LaNiO3 superlattices, specifically designed to solve a long-standing puzzle about the origin of simultaneous electronic, magnetic and structural transitions of the RENiO3 series.
The rare earth nickelates RNiO3 are metallic at high temperatures and insulating and magnetically ordered at low temperatures. The low temperature phase has been predicted to be type II multiferroic, i.e. ferroelectric and magnetic order are coupled and occur simultaneously. Confirmation of those ideas has been inhibited by the absence of experimental data on single crystals. Here we report on Raman spectroscopic data of RNiO3 single crystals (R = Y, Er, Ho, Dy, Sm, Nd) for temperatures between 10 K and 1000 K. Entering the magnetically ordered phase we observe the appearance of a large number of additional vibrational modes, implying a breaking of inversion symmetry expected for multiferroic order.
The metal-insulator transition (MIT) of bulk rare-earth nickelates is accompanied by a simultaneous charge ordering (CO) transition. We have investigated low-frequency resistance fluctuations (noise) across the MIT and magnetic transition of [EuNiO$_ 3$/LaNiO$_3$] superlattices, where selective suppression of charge ordering has been achieved by mismatching the superlattice periodicity with the periodicity of charge ordering. We have observed that irrespective of the presence/absence of long-range CO, the noise magnitude is enhanced by several orders with strong non-1/$f$ ($f$ = frequency) component when the system undergoes MIT and magnetic transition. The higher order statistics of resistance fluctuations reveal the presence of strong non-Gaussian components in both cases, further indicating inhomogeneous electrical transport arising from the electronic phase separation. Specifically, we find almost three orders of magnitude smaller noise in the insulating phase of the sample without long-range CO compared to the sample with CO. These findings suggest that digital synthesis can be a potential route to implement electronic transitions of complex oxides for device application.
Dynamical mean field methods are used to calculate the phase diagram, many-body density of states, relative orbital occupancy and Fermi surface shape for a realistic model of $LaNiO_3$-based superlattices. The model is derived from density functional band calculations and includes oxygen orbitals. The combination of the on-site Hunds interaction and charge-transfer between the transition metal and the oxygen orbitals is found to reduce the orbital polarization far below the levels predicted either by band structure calculations or by many-body analyses of Hubbard-type models which do not explicitly include the oxygen orbitals. The findings indicate that heterostructuring is unlikely to produce one band model physics and demonstrate the fundamental inadequacy of modeling the physics of late transition metal oxides with Hubbard-like models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا