ﻻ يوجد ملخص باللغة العربية
The swap Monte Carlo algorithm allows the preparation of highly stable glassy configurations for a number of glass-formers, but is inefficient for some models, such as the much studied binary Kob-Andersen (KA) mixture. We have recently developed generalisations to the KA model where swap can be very effective. Here, we show that these models can in turn be used to considerably enhance the stability of glassy configurations in the original KA model at no computational cost. We successfully develop several numerical strategies both in and out of equilibrium to achieve this goal and show how to optimise them. We provide several physical measurements indicating that the proposed algorithms considerably enhance mechanical and thermodynamic stability in the KA model, including a transition towards brittle yielding behaviour. Our results thus pave the way for future studies of stable glasses using the KA model.
We present a theoretical discussion of the reversible parking problem, which appears to be one of the simplest systems exhibiting glassy behavior. The existence of slow relaxation, nontrivial fluctuations, and an annealing effect can all be understoo
The binary Kob-Andersen (KA) Lennard-Jones mixture is the standard model for computational studies of viscous liquids and the glass transition. For very long simulations the viscous KA system crystallizes, however, by phase separating into a pure A p
We present the study of the landscape structure of athermal soft spheres both as a function of the packing fraction and of the energy. We find that, on approaching the jamming transition, the number of different configurations available to the system
We investigate the scaling of the interfacial adsorption of the two-dimensional Blume-Capel model using Monte Carlo simulations. In particular, we study the finite-size scaling behavior of the interfacial adsorption of the pure model at both its firs
Population annealing is a recent addition to the arsenal of the practitioner in computer simulations in statistical physics and beyond that is found to deal well with systems with complex free-energy landscapes. Above all else, it promises to deliver