ﻻ يوجد ملخص باللغة العربية
We construct a Lorentz and generally covariant, polynomial action for free chiral $p-$forms, classically equivalent to the Pasti-Sorokin-Tonin (PST) formulation. The minimal set up requires introducing an auxiliary $p-$form on top of the physical gauge $p-$form and the PST scalar. The action enjoys multiple duality symmetries, including those that exchange the roles of physical and auxiliary $p-$form fields. Actions of the same type are available for duality-symmetric formulations, which is demonstrated on the example of the electromagnetic field in four dimensions. There, the degrees of freedom of a single Maxwell field are described employing four distinct vector gauge fields and a scalar field.
We review the covariant canonical formalism initiated by DAdda, Nelson and Regge in 1985, and extend it to include a definition of form-Poisson brackets (FPB) for geometric theories coupled to $p$-forms, gauging free differential algebras. The form-L
In $d$ dimensions, the model for a massless $p$-form in curved space is known to be a reducible gauge theory for $p>1$, and therefore its covariant quantisation cannot be carried out using the standard Faddeev-Popov scheme. However, adding a mass ter
The equivalence between the covariant and the non-covariant version of a constrained system is shown to hold after quantization in the framework of the field-antifield formalism. Our study covers the cases of Electromagnetism and Yang-Mills fields an
Integral forms provide a natural and powerful tool for the construction of supergravity actions. They are generalizations of usual differential forms and are needed for a consistent theory of integration on supermanifolds. The group geometrical appro
The superform construction of supergravity actions, christened the ectoplasm method, is based on the use of a closed super d-form in the case of d space-time dimensions. In known examples, such superforms are obtained by iteratively solving nontrivia