ﻻ يوجد ملخص باللغة العربية
The superform construction of supergravity actions, christened the ectoplasm method, is based on the use of a closed super d-form in the case of d space-time dimensions. In known examples, such superforms are obtained by iteratively solving nontrivial cohomological problems. The latter usually makes this scheme no less laborious than the normal coordinate method for deriving component actions for matter-coupled supergravity. In this note we present an alternative procedure to generate required superforms in four space-time dimensions, which makes use of self-dual vector multiplets. It provides the shortest derivation of chiral actions in two different theories: (i) N = 1 old minimal supergravity; and (ii) N = 2 conformal supergravity. The N = 2 superform construction is developed here for the first time. Although our consideration is restricted to the case of four dimensions, a generalization to higher dimensions is plausible.
Integral forms provide a natural and powerful tool for the construction of supergravity actions. They are generalizations of usual differential forms and are needed for a consistent theory of integration on supermanifolds. The group geometrical appro
The field strength superfield of IIB supergravity on $AdS_5xz S^5$ is expanded in harmonics on $S^5$ with coefficients which are $D=5, N=8$ chiral superfields. On the boundary of $AdS_5$ these superfields map to $D=4,N=4$ chiral superfields and both
Inspired by superstring field theory, we study differential, integral, and inverse forms and their mutual relations on a supermanifold from a sheaf-theoretical point of view. In particular, the formal distributional properties of integral forms are r
Gauged off-shell Maxwell-Einstein supergravity in six dimensions with N=(1,0) supersymmetry has a higher derivative extension afforded by a supersymmetrized Riemann squared term. This theory admits a supersymmetric Minkowski x S^2 compactification wi
We show that the half-maximal SU(2) gauged supergravity with topological mass term admits coupling of an arbitrary number of n vector multiplets. The chiral circle reduction of the ungauged theory in the dual 2-form formulation gives N=(1,0) supergra