ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-Term Environmental Stability of Nitrogen-Healed Black Phosphorus

200   0   0.0 ( 0 )
 نشر من قبل Alisson R Cadore
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The unique optoelectronic properties of black phosphorus (BP) have triggered great interest in its applications in areas not fulfilled by other layered materials (LMs). However, its poor stability (fast degradation, i.e. <<1 h for monolayers) under ambient conditions restricts its practical application. We demonstrate here, by an experimental-theoretical approach, that the incorporation of nitrogen molecules (N2) into the BP structure results in a relevant improvement of its stability in air, up to 8 days without optical degradation signs. Our strategy involves the generation of defects (phosphorus vacancies) by electron-beam irradiation, followed by their healing with N2 molecules. As an additional route, N2 plasma treatment is presented as an alternative for large area application. Our first principles calculations elucidate the mechanisms involved in the nitrogen incorporation as well as on the stabilization of the modified BP, which corroborates with our experimental observations. This stabilization approach can be applied in the processing of BP, allowing for its use in environmentally stable van der Waals heterostructures with other LMs as well as in optoelectronic and wearable devices.

قيم البحث

اقرأ أيضاً

The travel of heat in insulators is commonly pictured as a flow of phonons scattered along their individual trajectory. In rare circumstances, momentum-conserving collision events dominate, and thermal transport becomes hydrodynamic. One of these cas es, dubbed the Poiseuille flow of phonons, can occur in a temperature window just below the peak temperature of thermal conductivity. We report on a study of heat flow in bulk black phosphorus between 0.1 and 80 K. We find a thermal conductivity showing a faster than cubic temperature dependence between 5 and 12 K. Consequently, the effective phonon mean free path shows a nonmonotonic temperature dependence at the onset of the ballistic regime, with a size-dependent Knudsen minimum. These are hallmarks of Poiseuille flow previously observed in a handful of solids. Comparing the phonon dispersion in black phosphorus and silicon, we showthat the phase space for normal scattering events in black phosphorus is much larger. Our results imply that the most important requirement for the emergence of Poiseuille flowis the facility ofmomentum exchange between acoustic phonon branches. Proximity to a structural transition can be beneficial for the emergence of this behavior in clean systems, even when they do not exceed silicon in purity.
Black phosphorus presents a very anisotropic crystal structure, making it a potential candidate for hyperbolic plasmonics, characterized by a permittivity tensor where one of the principal components is metallic and the other dielectric. Here we demo nstrate that atomically thin black phosphorus can be engineered to be a hyperbolic material operating in a broad range of the electromagnetic spectrum from the entire visible spectrum to ultraviolet. With the introduction of an optical gain, a new hyperbolic region emerges in the infrared. The character of this hyperbolic plasmon depends on the interplay between gain and loss along the two crystalline directions.
Black phosphorus has attracted interest as a material for use in optoelectronic devices due to many favorable properties such as a high carrier mobility, field-effect, and a direct bandgap that can range from 0.3 eV in its bulk crystalline form to 2 eV for a single atomic layer. The low bandgap energy for bulk black phosphorus allows for direct transition photoabsorption that enables detection of light out to mid-infrared frequencies. In this work we characterize the room temperature optical response of a black phosphorus photoconductive detector at wavelengths ranging from 1.56 $mu$m to 3.75 $mu$m. Pulsed autocorrelation measurements in the near-infrared regime reveal a strong, sub-linear photocurrent nonlinearity with a response time of 1 ns, indicating that gigahertz electrical bandwidth is feasible. Time resolved photoconduction measurements covering near- and mid-infrared frequencies show a fast 65 ps rise time, followed by a carrier relaxation with a time scale that matches the intrinsic limit determined by autocorrelation. The sublinear photoresponse is shown to be caused by a reduction in the carrier relaxation time as more energy is absorbed in the black phosphorus flake and is well described by a carrier recombination model that is nonlinear with excess carrier density. The device exhibits a measured noise-equivalent power of 530 pW/$sqrt{text{Hz}}$ which is the expected value for Johnson noise limited performance. The fast and sensitive room temperature photoresponse demonstrates that black phosphorus is a promising new material for mid-infrared optoelectronics.
Studies of polynitrogen phases are of great interest for fundamental science and for the design of novel high energy density materials. Laser heating of pure nitrogen at 140 GPa in a diamond anvil cell led to the synthesis of a polymeric nitrogen all otrope with the black phosphorus structure, bp-N. The structure was identified in situ using synchrotron single-crystal X-ray diffraction and further studied by Raman spectroscopy and density functional theory calculations. The discovery of bp-N brings nitrogen in line with heavier pnictogen elements, resolves incongruities regarding polymeric nitrogen phases and provides insights into polynitrogen arrangements at extreme densities.
Black phosphorus has recently emerged as a promising material for high performance electronic and optoelectronic device for its high mobility, tunable mid-infrared bandgap and anisotropic electronic properties. Dynamical evolution of photo excited ca rriers and its induced change of transient electronic properties are critical for materials high field performance, but remains to be explored for black phosphorus. In this work, we perform angle resolved transient reflection spectroscopy to study the dynamical evolution of anisotropic properties of black phosphorus under photo excitation. We find that the anisotropy of reflectivity is enhanced in the pump induced quasi-equilibrium state, suggesting an extraordinary enhancement of the anisotropy in dynamical conductivity in hot carrier dominated regime. These results raise enormous possibilities of creating high field, angle sensitive electronic, optoelectronic and remote sensing devices exploiting the dynamical electronic anisotropic with black phosphorus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا