ﻻ يوجد ملخص باللغة العربية
We tackle the problem disentangling the latent space of an autoencoder in order to separate labelled attribute information from other characteristic information. This then allows us to change selected attributes while preserving other information. Our method, matrix subspace projection, is much simpler than previous approaches to latent space factorisation, for example not requiring multiple discriminators or a careful weighting among their loss functions. Furthermore our new model can be applied to autoencoders as a plugin, and works across diverse domains such as images or text. We demonstrate the utility of our method for attribute manipulation in autoencoders trained across varied domains, using both human evaluation and automated methods. The quality of generation of our new model (e.g. reconstruction, conditional generation) is highly competitive to a number of strong baselines.
Low rank matrix factorisation is often used in recommender systems as a way of extracting latent features. When dealing with large and sparse datasets, traditional recommendation algorithms face the problem of acquiring large, unrestrained, fluctuati
We present a fast variational Bayesian algorithm for performing non-negative matrix factorisation and tri-factorisation. We show that our approach achieves faster convergence per iteration and timestep (wall-clock) than Gibbs sampling and non-probabi
Fine-grained facial expression manipulation is a challenging problem, as fine-grained expression details are difficult to be captured. Most existing expression manipulation methods resort to discrete expression labels, which mainly edit global expres
Given a reference model that includes all the available variables, projection predictive inference replaces its posterior with a constrained projection including only a subset of all variables. We extend projection predictive inference to enable comp
Variational Auto-Encoders enforce their learned intermediate latent-space data distribution to be a simple distribution, such as an isotropic Gaussian. However, this causes the posterior collapse problem and loses manifold structure which can be impo