ﻻ يوجد ملخص باللغة العربية
Low rank matrix factorisation is often used in recommender systems as a way of extracting latent features. When dealing with large and sparse datasets, traditional recommendation algorithms face the problem of acquiring large, unrestrained, fluctuating values over predictions especially for users/items with very few corresponding observations. Although the problem has been somewhat solved by imposing bounding constraints over its objectives, and/or over all entries to be within a fixed range, in terms of gaining better recommendations, these approaches have two major shortcomings that we aim to mitigate in this work: one is they can only deal with one pair of fixed bounds for all entries, and the other one is they are very time-consuming when applied on large scale recommender systems. In this paper, we propose a novel algorithm named Magnitude Bounded Matrix Factorisation (MBMF), which allows different bounds for individual users/items and performs very fast on large scale datasets. The key idea of our algorithm is to construct a model by constraining the magnitudes of each individual user/item feature vector. We achieve this by converting from the Cartesian to Spherical coordinate system with radii set as the corresponding magnitudes, which allows the above constrained optimisation problem to become an unconstrained one. The Stochastic Gradient Descent (SGD) method is then applied to solve the unconstrained task efficiently. Experiments on synthetic and real datasets demonstrate that in most cases the proposed MBMF is superior over all existing algorithms in terms of accuracy and time complexity.
We tackle the problem disentangling the latent space of an autoencoder in order to separate labelled attribute information from other characteristic information. This then allows us to change selected attributes while preserving other information. Ou
We present a fast variational Bayesian algorithm for performing non-negative matrix factorisation and tri-factorisation. We show that our approach achieves faster convergence per iteration and timestep (wall-clock) than Gibbs sampling and non-probabi
Recommender systems are often designed based on a collaborative filtering approach, where user preferences are predicted by modelling interactions between users and items. Many common approaches to solve the collaborative filtering task are based on
Non-negative Matrix Factorisation (NMF) has been extensively used in machine learning and data analytics applications. Most existing variations of NMF only consider how each row/column vector of factorised matrices should be shaped, and ignore the re
The embedding-based representation learning is commonly used in deep learning recommendation models to map the raw sparse features to dense vectors. The traditional embedding manner that assigns a uniform size to all features has two issues. First, t